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Abstract
Proportional reasoning involves thinking about parts and wholes, i.e., about fractional
quantities. Yet, research on proportional reasoning and fraction learning has proceeded

separately. This study assessed proportional reasoning and formal fraction knowledge in
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8- to 10-year-olds. Participants (N = 52) saw combinations of cherry juice and water, in
displays that highlighted either part-whole or part-part relations. Their task was to
indicate on a continuous rating scale how much each mixture would taste of cherries.
Ratings suggested the use of a proportional integration rule for both kinds of displays,
although more robustly and accurately for part-whole displays. Findings indicate that
children may be more likely to scale proportional components when being preésented with
part-whole as compared to part-part displays. Crucially, ratings for part-whole problems
correlated with fraction knowledge, even after controlling for age; suggesting that a sense

of spatial proportions is associated with an understanding of fractional quantities.

KEYWORDS: Proportional reasoning, fraction, magnitude estimation,

mathematical development, numerical reasoning

Reasoning about relative quantities.is important for many science disciplines, as for example
when one has to understand concentrations of liquids in chemistry or think about the density of
objects in physics. However, thinking about relative quantities is also crucial for many problems
that we encounter in everyday life: How much sugar is needed if I want to use a cake recipe
calling for three eggs, when I have only two eggs? Is buying three detergent packets for the price
of two a better deal than getting one packet for half price? Answering these problems exactly
requires formal calculation using fractions; even estimating the answers requires understanding of
the number system that goes beyond whole numbers. Unfortunately, students often exhibit
difficulties when learning to understand and carry out calculations with fractions (e.g., Hecht &

Vagi, 2010; Schneider & Siegler, 2010; Stafylidou & Vosniadou, 2004).
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Such findings documenting children’s difficulties with fractions have led the National
Mathematics Advisory Panel (2008, p. 18) to recommend that “the teaching of fractions must be
acknowledged as critically important and improved”. The importance of this goal is underlined by
recent findings that 6™ graders’ fraction understanding is correlated with their mathematics
achievement (Siegler, Thompson, & Schneider, 2011) and predicts mathematical proficiency up
to six years later (Bailey, Hoard, Nugent, & Geary; 2012; Siegler et al., 2012). In particular, 10-
to 14-year-old children’s fraction understanding predicts their knowledge of algebra in high
school (Booth & Newton, 2012; Booth, Newton, & Twiss-Garrity, 2013, Siegler etial., 2012).
Thus, a well-developed understanding of fractions seems to be foundational for an understanding

of higher mathematics.

Fractions can be defined as one part or several equal parts of a whole (or as a quotient p/q), and
their components can be scaled without changing the value of the fraction (i.e., 1/5 =2/10 = 3/15;
cf. Boyer & Levine, 2012). To compare fractions or to create equivalent fractions, one has to
understand “relations between relations” (Piaget & Inhelder, 1975) and thus, be able to reason
proportionally. Given the-above-mentioned findings that children often struggle with fractions,
the question arises-as:to whether children’s understanding of numeric fractions aligns with their

sensitivity to-proportions presented non-numerically.

The seminal studies of Piaget and Inhelder (1975) suggested that the answer may be “yes”; they
argued that proportional reasoning emerges late, around the age of 11 years. In their studies,
children were presented with two sets of red and white marbles that differed in absolute numbers
and proportions. They were then instructed to choose the set that was more likely to yield a red

marble in a random draw. Children younger than 11 years predominantly selected the set with the
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higher number of red marbles, thus focusing on the absolute number instead of the relation
between differently colored marbles. Because this task also required an understanding of ‘random
draw’ and probability, children’s difficulties may not have arisen because of lack of proportional
knowledge. However, similarly low performance in children younger than 11 years was reported
in subsequent studies using different procedures that did not involve probability judgments, for
example tasks based on mixing juice and water (Fujimura, 2001; Noelting, 1980) or liquids of

different temperature (Moore, Dixon, & Haines, 1991).

In sharp contrast to these studies, other research has suggested that proportional reasoning
emerges much earlier (Spinillo & Bryant, 1991; Sophian, 2000; Sophian & Wood, 1997) and may
even have its origins in infancy (McCrink & Wynn, 2007;Xu & Denison, 2009). For example,
several studies have demonstrated that 5- to'6-year-olds showed successful proportional
reasoning when presented with continuous amounts as opposed to discrete amounts (Boyer,
Levine, & Huttenlocher, 2008; Jeong, Levine, & Huttenlocher, 2007; Spinillo & Bryant, 1999).
Children also showed earlier competence at the age of 3 to 4 years when asked to produce equal
proportions, possibly by tapping their ability to reason by analogy (Goswami, 1989; Singer-
Freeman & Goswami; 2001). Analogical reasoning may build on similar cognitive competencies
as proportional reasoning, because it often also requires an understanding of relations between
relations (e.g., bananas are related to fruits like cucumbers are related to vegetables; cf. Gentner,
1989). Furthermore, studies using functional measurement paradigms have shown that 5- to 7-
year-olds made correct proportional judgments about the probability of events in complex
situations (Acredolo, O’Connor, Banks, & Horobin, 1989; Anderson & Schlottmann, 1991;
Schlottmann, 2001). In functional measurement methodology, two variables are typically
manipulated in a full factorial design, and participants’ task is to judge the combinations of these

variables on a rating scale. Thus, a reason for earlier success in these tasks may be that children
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were asked to translate spatial proportions into spatial ratings, which might be more intuitively
graspable than binary choice tasks (as used by Piaget & Inhelder, 1975). But does such intuitive

sensitivity to proportions translate to explicit reasoning about proportions and numeric fractions?

Even though young children seem to possess some sense of proportional magnitudes, early
instruction emphasizes whole numbers and counting instead. This experience with'counting and
whole number calculation may initially interfere with the acquisition of fraction understanding
(Mix, Levine, & Huttenlocher, 1999). This was underlined by findings showing that children who
have greater proficiency with whole numbers have more trouble grasping the notion of fractional
quantities (Paik & Mix, 2003; Thompson & Opfer, 2008). A possibility we explore in this study
is that some children may be able to access continuous relative representations more than others,

which in turn might help them in thinking and learning about formal fractions.

In initial support of this notion, two previous studies have reported a relation between
children’s understanding of non-numerical and numerical relative quantities (Ahl, Moore,
& Dixon, 1992; Moore etal., 1991). However, these studies used a temperature-mixing
task and thus, involved a highly abstract physical property that is often challenging for
children (Stavy & Berkovitz, 1980; see Wiser & Carey, 1983, for a history of science
perspective). In fact, 8-year-olds showed poor understanding of the temperature task and
even many 11- and 14-year-olds struggled with it (Moore et al., 1991). Furthermore, the
same stimulus set was presented in the numerical and non-numerical conditions, with the
only difference being that in the numerical condition, additional numeric information

about the temperature was displayed. Thus, it is possible that performance scores in these
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conditions were related simply because children relied primarily on the visual cues in

both, and largely ignored the numeric information.

In the current study, we used two distinct tasks that differed in more than just additional
numeric information, and assessed whether 8- to 10-\HDU ROGVY L@QWECAUWLYH QR(
understanding of spatial proportions is related to their formal knowledge about numeric
IUDFWLRQV &KLOGUHQYY XQGHUVWDQGLQJ RI VSDWLDO S
adopted a functional measurement approach (Schlottmann; 2001;Anderson &
Schlottmann, 1991). As this methodology allows for assessing not only absolute but
rceODWLYH UHVSRQVHY ZH DQDO\JHG HDFK FKLOGYV LQIRUPI
FKLOGUHQYY DEVROXWH DFEFEXUDFLHW presénted difgtdnt ZL WK SUH
combinations of continuous quantities of juice and water (Boyer & Levine, 2012; Boyer
et al., 2008; Fujimura, 2001; Noelting, 1980) and children were asked to indicate on a
rating scale how much these mixtures would taste of juice. By varying a concrete
property (taste) that could be visually indicated by color, the task was expected to be
easier as compared ‘to previous studies that used temperature-mixing tasks (Ahl et al.,

1992; Moore et al;; 1991).

Subsequently, participants were presented with a written test with formal fraction problems. This
test measured school-taught fraction knowledge, covering several aspects of conceptual fraction
knowledge (e.g., understanding fractional equivalence or comparing fractions; cf. Hallet, Nunes,
& Bryant, 2010) and procedural fraction knowledge (e.g., performing mathematical algorithms
with fractions; cf. Byrnes, 1992). We chose 8 years as the lower bound of the age range in this

study, given that children do not receive much instruction about fractions prior to third grade.



Downloaded by [Nora S. Newcombe] at 11:41 07 July 2015

5HVXOWY VKRZLQJ D UHODWLRQ EHWZHHQcthKHnoOakdgd QY SURSRU\
would suggest that being able to think about proportions spatially may help to overcome the

tendency to apply whole number concepts to fraction problems. Such a relation could also signify

that better understanding of formal fractioni@nces reasoning about Araumerical

proportions. Although a correlation would not allow for firm conclusions about the causal

direction, finding a relation is a critical first step in supporting theorizing and developing viable

interventions.

We also iwvestigated whether the cognitive processes involved in spatial proportional reasoning
differ for partwhole and parpart reasoning. Proportions can be represented as eitherudet
relations (e.g., the amount of juice in relation:to the total amodiguidl) or partpart relations

(e.g., the amount of juice in relation to the amount of water). Some previous research suggested
that partpart encoding is easier for® 8yearold children (Spinillo & Bryant, 1991). Another

study (Singer & Resnick, 129 showed that 1o 13yearold children needed to have

information about both partsto make decisions about proportional problems, whereas information
about the whole was less crucial, indicating that children relied oipaertather than part
wholerelations. However, a study by Sophian and Wood (1997) found evidence that children

performed better for problems involving parhole reasoning than pgrart reasoning.

7TKHVH UHVXOWY VXJJHVW WKDW WKH IUDPLQJ RI SUREOHPYV PLJI
reasoning, and account for these differences. Therefore, in the present study we varied the

presentation such that half of the children saw proportions invarounts of juice and water

were presented on top of each other, making the parts as well as tivbqartelation easily

accessible (stacked displays, see Figure 1). The other half saw proportions in which the amounts
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were presented aligned next to le@ather, thus providing easy access to the sizes of the parts, but
less obvious information about the pattole relation (siddoy-side displays). If encoding of
partwhole relations is easier than pp#rt relations or vice versa, we expected to seerdifices

in strategies and/or accuracies. Moreover, given that fractions arehgaé relations, it was
reasonable to expect a more robust association between formal fraction knowledge and

presentations that highlight pawvhole relations.

To date, it &0 remains an open questiahythese different kinds-of presentations might
lead to different results. One possible reason may be that they promote a different
understanding of how proportional components should be scaled. Scaling can be defined
as a proess of transforming absolute magnitudes while conserving relational properties,
and it is therefore an important aspect of proportional reasoning (Barth, Baron, Spelke, &
Carey, 2009; Boyer & Levine, 2012; McCrink & Spelke, 2010). The importance of
scalirg for proportional reasoning.is evident in everyday life, for instance when one
wants to adjust the amounts of ingredients for a cake for 4 people to 6 people, or prepare
the same concentrations of synwpter mixtures in different jugs. It is possible ttha
during partpart reasoning, in which the focus lies on the parts themselves as well as on
the relation of the parts to each other (e.g., part A is bigger than part B), it is harder to see
how -much the magnitudes have to be scaled, as compared-tehpbtpresentations, in

which the focus lies on the total amount. To test this assumption, we took advantage of
the fact that previous research showed that error rates increased linearly with larger
scaling factors (cf. Boyer & Levine, 2012; McCrink & Spelk2010; MsShring,

Newcombe, & Frick, 2014), indicating that scaling entails cognitive costs. Thus, we
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presented proportions of different magnitudes, such that their sizes had to be transformed
by four different scaling factors to match the size of the ratoade. If scaling was used
predominantly in partvhole presentations, one could expect errors to increase as a linear

function of scaling factor for pawhole displays but not for papart displays.

METHOD

Participants

Fifty-two 8- to 10-yearold children participated in the present study. Half of the children
were assigned to the stacked conditior 6, 14 girlsmean ages 9;3, range: 8;Qt

10;8) and the other half to the sidg-side conditiontf= 26, 12 girlsmean age= 9;3,

range: 8;1+10;8). Four additional children were tested but excluded from the final
sample due to unclear status in mathematics because of homeschooliny¢arel®),
diagnoses of an attention deficit.disorder (ong8rold and one 1§earold), or

incomplete data othe proportional-reasoning test (oneyHarold). Children were

recruited from a pool of families that had volunteered to take part in studies of child
development and came from 28 different schools that were located in 15 different school
districts neam large U.S. city. Children were predominantly Caucasian and from middle

class backgrounds.

STIMULI
The materials for the proportional reasoning task consisted of 16 pictures that were
presented on white paper in a ring binder. The pictures showedadedblue rectangle,

representing cherry juice and water, respectively. The rectangles were 2 cm wide; their
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length was varied systematically, according to a factorial design. Below the rectangles, a
12 cm long horizontal line served as a rating scakngle cherry was printed next to the
left end of the scale, indicating a faint taste of cherries; a heap of many cherries was
shown next to the right end of the scale, indicating a strong taste of cherries. In the
stacked condition, the red and blue aecfies were presented stacked on top of each

other; in the sidédvy-side condition, they were presented next to each other, aligned on

the bottom with 1 cm between them (see Figure 1).

A test of fraction knowledge was developed based on the Common GteeS&indards

for Mathematics (for examples see Appendix). Several aspects of fraction understanding
from grade 3 to 5 were included (e.d% grade: using visual fraction models,
understanding fraction equivalence by:comparing fractions with equal denomin8tors; 4
grade: understanding fraction equivalence by comparing fractions with unequal
denominators, adding and subtracting fractions wgireédenominators, multiplying
fractions with whole numbers, understanding decimal notation for fractirpae:

adding and subtracting fractions with unequal denominators, multiplication and division
of fractions, calculating with mixed numbers). Tdeestions were presented numerically
(i.e., no-word problems were included) as fraction estimations or comparisons, missing
value problems, or opeended problems. All children worked on the same fractions test
that consisted of problems addressing kndgtefrom & to 5" grade. Children of every
age group attempted all problems. There were a total of 25 problems that were scored

with one point each if solved correctly, and the number of points was translated into a

1C
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percentage score. Children were allovie skip a problem if they did not know the

answer, which was scored with zero points.

PROCEDURE & DESIGN
Children were tested individually in a laboratory room. The experimenter first presented
the proportional reasoning task, showing the child a @adfila bear and telling.a short
story about how this bear likes to drink cherry juice with water. The experimenter
explained that cherry juice is made of cherries, very sweet and red. Then, the child was
presented with different combinations of cherrgg@uand water and asked to help the

bear decide how much each combination would taste of.cherry.

Children were randomly assigned to either the stacked or théiside condition, and
they received three instruction trials in the same format as the later test trials. The first
two instruction trials served. as emdchor trials in which the experinten explained the

two end anchors of the scale and pointed out the two amounts of cherry juice and water
using gestures by indicating their length between index finger and thumb. For the first
endanchor trial (28 units of juice vs. 2 units of water, vatte unit being equal to 0.5

cm), the-experimenter placed a small rubber peg on the correct location orctne 12
scale. In.the second trial (2 units of juice vs. 28 units of water), the experimenter asked
the child to guess how much this mixture wouldeastcherry and place the rubber peg
accordingly. Children received corrective feedback on their responses. On the third
instruction trial (22 units of juice vs. 8 units of water), children were asked to place the

rubber peg at a point between the end arebn the rating scale that would indicate the

11
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cherry taste of this mixture. This trial served to prevent children from only using the end

positions of the scale and to further familiarize them with the rating scale and the
placement of the rubber peg. FHH[SHULPHQWHU PDUNHG HDFK FKLOGTYV
fine-tip weterase marker and flipped the page for the next trial. Amounts of juice and

water presented in instruction trials were different from those in subsequent test trials.

Test trials consistedf @ystematic combinations of cherry juice and-water, such that the
cherry juice part (3, 4, 5, 6 units) as well as the total amount (6, 12,718, 24 units) varied
on 4 levels. These 16 combinations were presented twice in.two consecutive blocks,
yielding a otal of 32 trials that took about 10 minutes. Because the total amounts of 6,
12, 18, and 24 units had to be mapped onto a rating scale of 24 units (which equals 12
cm), children had to scale the total amount by a factor of 4, 2, 1.33, or not to sdale (fac
of 1), respectively. Thus, the design involved four scaling factors, in which the
proportional components had. to be either mapped directly (i.e., scaling factor 1:1) or
scaled to fit the size of the rating scale (i.e., scaling factors 1:1.33, 1:2) oChildren

did not receive any feedback. The combinations were presented in one of two different
guastrandom orders, in which immediate repetitions of factor levels were avoided.

Roughly-half of the participants were randomly assigned to each order.

After the proportional reasoning task, children were presented with thegraper
pencil fractions test involving numeric fractions. The experimenter read the questions
aloud to each child and no feedback was given. The fraction test took about 15 to 25

minutes.

12
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RESULTS

,Q D ILUVW VWHS FKLOGUHQYYVY LQIRUPDWLRQ LQWHJUDWLRQ VW
were classified by means of analyses of variance (ANOVAS) for children in the stacked and side

by-side condition. Single main effects of etitligice or total amount were taken as an.indicator

that participants focused on one of these two dimensions (centration). Main effects of both juice

and total amount indicated that the two pieces of information were integrated. As can be seen in

the normave response pattern in Figure 2, a correct proportional integration strategy would

result in a farshaped pattern, which is statistically indicated by significant main effects as well as

an interaction of total amount and juice. In contrast, a subtrantegration strategy would be

evident in a parallel pattern and, statistically, in significant main effects. dmlg second step,

ZH HIDPLQHG FKLOGUHQTV DEFXUDF\ RQ DQ DEVROXWH OHYHO L
close their ratings were the normative responses and tested how scaling factors influenced
FKLOGUHQTV DFFXUDF\. )LQDOO\ WKH UHODWLRQ EHWZHHQ FKLC

reasoning task and their fraction test'scores was investigated.

! Strategies were also analyzed on an individual lesfeWilkening, 1979), in order to rule out averaging

artifacts.The majority of children used a proportional integration rial®oth conditions, but a slightly

smaller percentage of childrémthe sideby-side condition(38.5%)than in the stacked conditi¢s7.7%)

didso $Q HTXDO QXPEHU RI FKLOGUHQ XVHG D VXEWUDFWLYH VWUDWHJ\
testsshowed no significant difference in strategy use between the two condjgion81), nor between

younger and older childrep = .36).Childrenwho used a proportional asubtractive integration rule

appliedthis rule with very high consistency (i.€2garson correlations between measurement repetitions

werer = .93 andr =. 76, respectively).

13
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INFORMATION INTEGRATION STRATEGIES ON THE PROPORTIONAL

REASONING TASK

$ SUHOLPLQDU\ RYHUDOO $129% RI 3SFKHUULQHVV™ UDWLQJV LQ F
of juice and sext(3, 144) = 2.91p 2 GXH WR JLUOVY KLJKHU UDWLQJV |
juice amounts; howeveBonferronicorrected post hoc tests revealed no significant differences

(all ps > .05). As this interaction was unexpected and not easily interpretable;and because there

were no further significant effects of order and sexHalk 2.06ps > .10),data were collapsed

across these variables in subsequent analyses.

7R LQYHVWLIJDWH WKH HIITHFWV.RlL. SUHVHQWDWLRQ W\SH RQ FKL
betweenrparticipants variable and the withparticipant variables of total amount (4) and juice

(4) was calculated. Given the relatively wide:age range in the present study, children were

divided into youngerrhean age= 8;6,SD= 5 months) and older childreméan age= 10;1,SD

= 6 months) using a median split, and age (younger vs. older childasrgdded to the analysis

as a betweeparticipants variable. This analysis revealed significant interactions of presentation

type with total amount (3, 144) = 6.70p 2= .12, and presentation type with jui€&3,
144) =5.01p 2= 10, as well as a significant thregy interaction of presentation type,
total amount, and juicé;(9, 432) = 2.60p 2= .05. These effects indicate that children in

the stacked‘and sid®/-side conditions differed in their integration of the te@nponents. In

addition; the ANOVA revealed a significant interaction of age group with total anfe(@t144)

=3.92p 2 20GHU FKLOGUHQTV UDWLQJYV GLIITHUHG PRUH EH\
ZKHUHDV \RXQJHU FKLO GUH ¢hgVHoweewr_Bpaférrartbliddted PatVietU W R JH

comparisons showed that only the two smallest total amounts of 6 and 12 uniiss(500b)

14
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differed significantly between younger and older children. There were no further significant

effects of age group (dFs < 3.75, alps > .059) or presentation type (B8 < 3.09ps > .08).

In order to shed light on the thresy interaction of presentation type, total amount, and
juice reported above, separate ANOVAs for the two conditions were carried out. In the
stacked condition, the ANOVA yieldesignificant main effects of total amouii(3, 75)

= 601.16p < .001, *= .96, and of juiceF(3, 75) = 242.06p < .001, = .91, and a
significant interaction of total amount and jui€é9, 225) = 25.95p < .001, = .51 In

the sideby-side condition, the same effects were foumdignificant effect of total
amount,F(3, 75) = 80.77p < .001, ?=.76, and ofjuicef(3, 75) = 68.72p < .001, =

.73, and a significant interaction of total amount and jUi@, 225) = 9.20p < .001, ?

= .27. These resultadicate that on the group level, children integrated the information
according to a proportional integration rule in both conditions. However, as Figure 2
indicates, the response pattern of children ensfacked condition looked almost

identical to the normative pattern, but the pattern was somewhat less clear in-the side
side condition. That is; even though children integrated both proportional components in
both conditions, their integration patteaappeared less accurate on an absolute level in

the sideby-VLGH FRQGLWLRQ 7KXV LQ WKH QH[W VHFWLRQ FKL

investigated further.

&+,/'5(176 $%62/87( $&&85$&<

7TR LQYHVWLIJDWH FKLOGUHQYV DE VriRnSfotwtHe GalaFakdJDF\ LW ZDV QH

standardize scores across differences in using the rating scale. For example, one child might have

15
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used only a small part of the scale, whereas another child might have used the total length,

distributing the responses over the whadale. Such individual usage of the rating scale does not

affect analyses of response strategies reported above, because these are based on relative

differences between single responses. However, it would be misleading when averaging across

absolute accucdes. Furthermore, the slightly compressed response pattern in thy-sidgie

condition as compared to the stacked condition might have been a result of a restricted usage of

the rating scale. In order to control for such restricted usage by diffedivitlinals orin

GLITHUHQW FRQGLWLRQV FKLOGUHQYY UHVSRQVHVY ZHUH VWDQG
HDFK FKLOGYV LQGLYLGXDO VWD Q G DpddtizadidhslobeWwayof) 7KLV SURFI
standardizing individual data and is typically use@ddress systematic response biases or

tendencies to shift responses to one end of the rating scale (Fischer, 2004; Hicks, 1970). In a next

VWHS D YDULDEOH IRU FKLOGUHQYY RYHUDOO SHUIRUPDQFH LQ
Tothisend, FKLOGUHQTY UHVSRQVHYV LSVDWL]JHG ZHUH VXEWUDFWHC
responses. Then, the absolute values of these deviations from the norm were averaged across

trials.

To find out whether children in the stacked and-kigside condition diféred on an absolute
level, an ANOVA was calculated with presentation type (stacked vsbgidigle) and age group
(younger vs. older) as betweparticipants variables, and absolute deviation as dependent
variable. The analysis showed a significant méfiece of presentation typ&;(1, 48) = 8.78p <
2= .16, with children in the stacked conditiovi € 0.35,SE= 0.03) showing smaller

deviations from the correct response than children in thebsidede condition ¥ = 0.62,SE=
0.09, allps <.01). Age group also had a significant effégtl, 48) = 7.19p 2= .13, with
older children 1 = 0.37,SE= 0.04) outperforming younger oned € 0.60,SE= 0.09, allps <

.01). There were no further significant effects Fal< 2.49, alps >.12).

16
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7+( ,1)/8(1&( 2) 6&$/,1* 21 &+,/'5(176 $&&85$&<

&KLOGUHQYY DEVROXWH GHYLDWLRQVY ZHUH DYHUDJHG DFURVYV \
ANOVA was calculated, with scaling factor (1:1, 1:1.33, 1:2, 1:4) as wjihiticipant variable,
and presdation type (stacked vs. sidhg-side) and age group (younger vs. older) as between
participants variables. The ANOVA yielded a significant effect of scaling fee8r,144) =
4.22,p 2= .08, which was qualified by a significantx&y-interactial between scaling
factor, presentation type, and age grde(3, 144) = 2.69p 2 =,05.. There were no further
significant effects (alFs < 2.50, albs > .06). To shed light on:this thragy interaction,
separate ANOVAs with scaling factor angeagroup for the different presentation types were
calculated. In the stacked condition, scaling factor had a significant &8¢cf2) = 14.71p <
2= .38, which was best explained by a linear functiz(d, 24) = 26.60p 2= 53,
indicating that deviations increased linearly with larger scaling factors (see Figure 3). There were
no further significant effects (dfls < 2.94, alps > .09). By contrast, there was no effect of
scaling factor in the sidey-side conditionF(3, 72) = 0.8, p 2= .03, and no interaction
with age groupk(3, 72)=.1.50p 2= 06. The ANOVA yielded a significant main effect
of age group onlyk(1, 24) =5.06p 2= .17, because older childred € 0.43,SE= 0.12)
outperformed younger onell € 0.81,SE 7KXV HYHQ WKRXJK FKLOGUHQYV C
increased with.age in the sitdg-side condition, performance was not influenced by scaling

factor, as'it'was in the stacked condition.

Test Of Fraction Knowledge

$Q $129% ZLWK FKLOGUHQTV IUDFWLRQ WHVW VFRUH DV WKH GH:¢

vs. older) and presentation type (stacked vs-lsyggide) as betweeparticipants variables

17
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yielded a significant main effect of age gro&?, 48) =47.19,p 2= 50, showing that
older children 1 = 74.0%,SE= 3.57) performed better than younger childigin{44.9%,SE=
2.13; allps < .001). The ANOVA yielded no other significant effects Falk .16,ps > .69) and
therefore, no signifiaat difference between the fraction test score of children in the staldked (
58.6%,SE= 4.12) and sidéy-side conditionsNl = 60.3%,SE= 4.13). This difference was
partly due to younger childreiM(35.1 %,SE= 2.88) solving more problems incorrecthah

older children 1 = 24.4%,SE= 3.53),t(50) = 2.33p < .05,d = 0.66. In addition, younger
children skipped more problenidl & 20.0%,SE= 3.76) as compared to older childréh £

1.1%,SE= 0.47),t(50) = 5.00p < .001,d = 1.41.

Relation Between Proportional Reasoning And Fraction Knowledge

3HDUVRQ FRUUHODWLRQV'EHWZHHQ FKLOGUHQTV IUDFWLRQ NQR
SURSRUWLRQDO UHDVRQLQJ PHDQ DEVROXWH GHYLDWLRQ ZHUI
reasoniy is related to their fraction knowledge, a significant negative correlation would be

expected, with smaller deviations in the proportional reasoning task going along with a higher

score in the fractions test. The correlation in the stacked conditionigidg significant and

negativey(24) =-.61,p.< .001, even after controlling for ag¢23) =-.47,p < .05. By contrast,

the correlation in.the sidey-side condition was not significam(24) =-.28,p = .17, and

remained nossignificant after contrding for ager(23) = .07p 8VLQJ WKH#-)JLVKHUTV
transformation, the difference between thesecggrolled correlations in the two conditions was

found to be significanz =-1.97,p < .05.

Linear regression analyses were carried out) agfe entered in a first step, absolute deviation

from the correct answer entered in a second step, and the fraction test score as the predicted

I
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variable. In the stacked condition, these two predictors accounted for a significant part of the
variance R = .72,F(2, 25) = 28.95p < .001. As would be expected, age explained a significant
part (63%) of the varianc@ € .66,p < .001). However, adding proportional reasoning as a
predictor significantly increased the explained variance of the maBeH.08 p = -.32,p <

.05). In the sidéy-side condition, the explained variance W&s .40,F(2, 25) = 7.60p < .01.

In this case, age explained all 40% of the variafice .66,p < .01), and proportional reasoning

did not add any explained varian¢e=.06,p = .75).

DISCUSSION
The present study investigated ® 10year ROGVY] SURSRUWLRQDO UHDVRQL
their integration of proportional components, their absolute accuracy, and the relation
EHWZHHQ FKLOGUHQTV. SUR SR fragtioR @qhBeGtaddihD. \FRd@Ng J DQG |
suggested that children as young as 8 years old were able to consider both components
that constitute a proportion and integrate them in a normative proportional Tvese
results stand in contrast to previous claimat iroportional reasoning does not emerge
before the age of 11 yedigloore et al., 1991Noelting, 1980; Piaget & Inhelder, 1975)
and confirm® other findings that even younger children are able to reason about
proportions. (Acredolo et al., 1989; Boyer &\lime, 2012; Boyer et al., 2008; Jeong et
al., 2007; Schlottmann, 2001; Singeneeman & Goswami, 2001; Sophian, 2000;
Spinillo & Bryant, 1991, 1999). In line with previous paradigms showing earlier success

LQ FKLOGUHQTTV SURSRUWLIER @& @he piesgemM&BRianLd) dontindud.V SRV V
2 A substantial number of children applied a proportional strategy on the individual level, suggesting that

these group resdtwere not due to averaging &atits.
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proportional quantities and the nature of the response mode (spatial ratings that are more

LQWXLWLYHO\ JUDVSDEOH OHG WR FKLOGUHQTTV VXFFHVV F

PART-WHOLE VERSUS PART-PART ENCODING
Although on the group level, children in both presentation conditions integrated
components proportionally, the compressed integration pattern in. thebyssilde
condition suggested that children differentiated the units of juice‘less than in the stacked
condition. Even after controlling for idiosyncratic usage of the rating scale by
QRUPDOL]LQJ WKH YDULDQFH RIL WKH UHVSRQVHV FKLOGI
significantly higher in the sidby-side condition than in the stacked conditidrnis
finding indicates that the task was more difficult if the components were presented side
by-side as two separate objects. The finding that children in the two conditions did not
differ in their average fraction test scores rules out the possibility thatekerpresults
are due to children in the_stacked condition having a better overall understanding of
rational numbers. In ‘general, these results are in line with previous studies that
demonstrated better proportional reasoning performance in the congatwhole than
partpart relations (Sophian & Wood, 1997). These results imply that the instruction of
proportions..in _school may benefit from focusing on érble relations instead of

comparing separate parts.

Analyses of how scaling influenced chidr QY DEVROXWH HUURUV UHYHDOH

the sideby-side condition showed large errors overall, but that these deviations were not

affected by scaling factor. Neither older nor younger children showed signs of scaling in
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the sideby-side conditioneven though performance generally improved with® aBg
contrast, children in the stacked condition showed smaller errors that increased with
larger scaling factors, suggesting that they mentally expanded the proportional amounts
to match them onto thetmag scale (cf. Boyer & Levine, 2012; MShring et al., 2014).
Thus, it appears that children in the stacked condition were aware of the necessity to scale
the magnitudes, whereas children in the $igeide condition did not seem to transform

the proportims accordingly. An understanding of scaling may have been more difficult in
the sideby-side condition, because the separate parts were more prominent and a
betweerobject relation had to be mapped onto a unitary rating scale, which may have
included an aditional processing step of mentally combining the two amounts. By
contrast, in the stacked condition, the two amounts were presented already combined into

one coherent Gestalt, which may have been easier to map onto the rating scale.

It is also conceivale that such betweearbject relations may have led children to focus

on absolute amounts, which_may have misled them to focusxtmmsiverather than
intensiveproperties (Howe, Nunes, & Bryant, 2010; JSger & Wilkening, 2001; Strauss &
Stavy, 1982). Whefas intensive properties do not depend on the extent or absolute
amount-of the whole, extensive properties do. For example, if someone drank half of the

cherrywater mixture in a glass, the remaining mixture would still taste the same

% The fact that older children outperformed younger ones in the present proportional reasoning task could
be explained by a general increase in cognitive abilities, but it could also be that older children benefitted
more from feedback during thestruction trials (cf. Opfer & Thompson, 2014). Future studies may

systematically investigate the importance of feedback for proportional reasoning at different ages.
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(intensive property)whereas its volume would decrease (extensive property). Thus, in
the sideby-side condition children may have focused on volume or absolute amount,
whereas an understanding of proportion would require focusingtensivequantities

such as juice concemation (taste).

THE RELATION BETWEEN PROPORTIONAL REASONING AND FRACTION
UNDERSTANDING

,PSRUWDQWO\ LW ZDV IRXQG WKDW FKLOGUHQTV SURSRU

their knowledge about fractions. However, this correlation was significant stabked

condition only, which was the easier condition in<that overall accuracy was significantly

higher than in the sidby-side condition.. This ‘correlational finding is in line with

previous findings that numericatagnitude estimations (i.e., ability tmmpare sets of

dots or place whole numbers or fractions on a number line) are associated with

mathematics achievement (Geary, Hoard, Bgrdven, Nugent, & Numtee, 2007,

Halberda Mazzocco, & Feigenson, 2008jegler & Booth, 2004, Siegler et al., 2011).

2XU ILQGLQJY HIWHQG WKHVH UHVXOWYV Espafdd RaLQJ WKDW

numerical proportionsare related to theiformal, numerical fraction knowledge. This

relation-was found even after controlling for age, showing that individualetites in a

spatial sense of proportions are associated with the ability to conceptualize formal

fractions and perform mathematical operations on them above and beyond effects of age.

A possible explanation for why these abilities are related is th&drehiwho have a

better understanding of the relative size of proportions are better able to visualize
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fractions in terms of spatial analogues, which in turn may help them to understand
numerical fractions (perhaps because they can differentiate plaasiblémplausible
DQVZHUYV 7TKH LPSRUWDQFH RI VSDWLDO DQDORJXHV
magnitudes was shown in a recent intervention study wittslatchildren (Fuchs et al.,

2013). This training mainly involved representing, comparinglewng, and._placing
fractions on a number line from 0 to 1. Children in the training. group showed
considerable gains in their ability to carry out operations with-fractions relative to a
control group. Along the same lines, cultural differences in hogtifraal-magnitudes are
LOQOWURGXFHG LQ VFKRRO KDV EHHQ VKRZQ WR DIIHFW
1999; Moseley, Okamoto, & Ishida, 2007). Whereas teachers in the U.S. explain fractions
often with the concept of counting parts (e.g.; 1/3 as dniree slices of a pizza),
teachers in Japan or China explain fractions as distances on number lines. Even though in
both cases children may develop a representation of fractional magnitudes, imagining
magnitudes by partitioning can be troublesome wheorites to very big fractions (e.g.,
385/975), improper fractions (e.g., 5/4), and negative fractidné)( However, the same
examples of fractions can be imagined more easily on a number line, which might be one
reason why Chinese and Japanese studénis a better overall fraction understanding

as compared to U.S. students (Ma, 1999; Moseley, Okamoto, & Ishida, 2007). In line
with these observations, several researchers have suggested that teaching fractions in U.S.
schools would profit from using muttie representations ranging from subdividing
circles, to folding paper strips, and to using sets of discrete chips to represent a fraction

(cf. The Rational Number ProjedCramer, Behr, Post, & Lesh, 2009/1997).
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Another explanation for the correlationtiyeen proportional reasoning and fraction
understanding in the stacked condition may be that children with better fraction
knowledge performed better in the proportional reasoning tasK DW LV FKLOGUHQ(YV
fraction knowledge may have helped thenemncode spatial proportions and to reproduce

them on the rating scale. Even though this possibility cannot be eliminated by our
correlational results, it seems unlikely in light of many studfesedolo<et al., 1989;

Boyer & Levine, 2012; Boyer et al., 280Jeong et al., 2007; Schlottmann, 2001; Singer

Freeman & Goswami, 2001; Sophian, 2000; Spinillo & Bryant, 1991, 1819@\ing

signs of proportional reasoning at an age when understanding of formal fractions is not
present (Hecht & Vagi, 2010; SchneideiSgegler, 2010; Stafylidou & Vosniadou, 2004).
Nonetheless, future studies using longitudinal designs or training components are needed

to pin down the causal direction of the relation we have identified. It should also be noted

that children in our sampleame from various schools and thus differed in how they

learned about fractions. Even though we were able to control for general effects of
fraction exposure in school by controlling for age, we were not able to investigate the
specific effects that diffe HQFHY LQ IUDFWLRQ LQVWUXFWLRQ KDG F
reasoning. Future 'studies may incorporate this aspect in their design and try to

disentangle effects of differences in fraction instruction.

One testable implication of our findings is that experience and training with spatial
SURSRUWLRQV PD\ IDFLOLWDWH FKLOGUHQTV XQGHUVWDAQ
VXFFHVV LQ PDWKHPDWLFV )RU H[DPSOH IBpoMibHULQJ FKLC

may improve their understanding of fractional equivalence because they may realize that
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partwhole relations stay the same even though they involve different numbers of parts

and different unit sizes (e.g., 1/5 and 2/10). Such training may eW HDVH FKLOGUHQ
visuaktspatial competencies, which have been found to be an important predictor for
IUDFWLRQ FRQFHSWYV 9XNRYLF HW DO ,Q DGGLWLRQ
benefit from experience localizing proportions on a (mentad) ¢éin scale. Overall, our

ILQGLQJ RI D VLIQLILFDQW UHODWLRQ EHWZHHQ FKLOGUHC
and their ability to understand formal fractions adds to a growing body of research
supporting the importance spatializingthe mathematics curriculum-in the elementary

school years (Mix & Cheng, 2012; Newcombe, 2013; Newcombe, Uttal, & Sauter, 2013).
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#SBE0541957 and SBH041707 and fromhe Swiss National Science Foundation #
PPOOP1_150486. We wish to thank Friedrich Wilkening for helpful suggestions and
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APPENDIX: EXAMPLES OF PROBLEMS IN THE FRACTION TEST
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Which fraction is smaller? Please circle your answer.

4 2
12 12

1
20

Please add/subtract/multiply/divide the following values:

6 _ 1 _
12 12 2 X6

7 2
E+E= — _—=
9 9 10 100

12 _ 24 6 36

13~ 25 T/ F 5<% T/ F

3,4 1_z2,1

E’moT/F 22-2+2 T/ F
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Figure 1. Examples of a stacked (left) and a-biglside (right) presentation of

cherry juice (e.g., 6 units) and water (e.g., 24 units) in the proportional reasoning task.
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J)LIXUH &KLOGUHQYV UDWL Qtdél &oWtkitsFRPELQHG MXL
(integration patterns) on the group level for children in the stacked antysgide

condition.
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Figure 3. Absolute (ipsatized) errors averaged over scaling factors for younger

and older children in the stacked aside-by-side condition.
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