

- 1: Take a longitudinal look at the formation of cognitive maps over childhood into adolescence.
- Build on cross-sectional virtual navigation study of 105 children (8 to 16)¹ showing performance comparable to adults around 12 years
- 2: Does route representation develop before route integration?
- As seen in the cross-sectional work¹

3: How longitudinally reliable are navigation measures?

		lethod		
Participants	Age	Group	Μ	
	Lower (T1 age =	8 to 12 yrs.)	13	1
	Upper (T1 age =	12 to 16 yrs.)	8	1
50 of	105 children retur (min = 1.9 yea	med for follow-up 3 y ars, max= 4.4 years)	years)	lat
Measuring Na	avigation:			
	Silcton Large-	Scale Virtual Enviro	nmen	t ²
Lynch Station	Harris Hall	Tobler Museum CONNECTINC ROUTE Gold Harvey House Figure 1. Aerial m	edge Hall	of S
•	Task	Outcome	Meas	sur
Within-Retween-I	oute Pointing	degrees of p	ointin	ge
Mode	el Building	R ² configuration	onal a	

Longitudinal Development of Cognitive Maps Maria Brucato, Alina Nazareth & Nora S. Newcombe Department of Psychology, Temple University

Mean Difference	t	df	р	Cohen's d
-5.3 °	-3	45	< 0.01	0.438
-6.4 °	-3	45	< 0.01	0.441
0.2	4	46	< 0.001	0.583

Results

Aim 3: Longitudinal Reliability of Virtual Silcton

	Longitudinal Reliability (<i>r</i>)	р	n
Virtual Silcton			
Pointing Within-Route	0.36	0.014	46
Pointing Between-Route	0.19	0.196	46
Model Building	0.15	0.312	47
Other Measures			
Spatial Orientation Test	0.59	0.00	48
Mental Rotation Test	0.51	0.00	50

Conclusions & Implications

1: Cognitive map formation improves across childhood

• Overall \rightarrow children improved on all VE navigation measures

2: Longitudinal data confirm cross-sectional findings.

Within-route knowledge develops more steeply initially.

3: Virtual Silcton shows moderate longitudinal reliability across three years only for withinroute pointing task.

Adolescents "trade places" as they stabilize integration capabilities at adult levels.

<u>References</u>

- 1. Nazareth, A., Weisberg, S. M., Margulis, K., & Newcombe, N. S. (2018). Charting the development of cognitive mapping. Journal of experimental child psychology, 170, 86-106.
- 2. Weisberg, S. M., Schinazi, V. R., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2014). Variations in cognitive maps: Understanding individual differences in navigation. *Journal of* Experimental Psychology: Learning, Memory, and Cognition, 40(3), 669.
- 3. Weisberg, S. M., & Newcombe, N. S. (2016). How do (some) people make a cognitive map? Routes, places, and working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(5), 768.