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Abstract
Episodic memory capacity requires several processes, including mnemonic discrimination of similar experiences, termed pattern
separation, and holistic retrieval of multidimensional experiences given a cue, termed pattern completion. Both computations
seem to rely on the hippocampus proper, but they also seem to be instantiated by distinct hippocampal subfields. Thus, we
investigated whether individual differences in behavioral expressions of pattern separation and pattern completion were corre-
lated after accounting for general mnemonic ability. Young adult participants learned events comprised of a scene-animal-object
triad. In the pattern separation task, we estimated mnemonic discrimination using lure classification for events that contained a
similar lure element. In the pattern completion task, we estimated holistic recollection using dependency in retrieval success for
different associations from the same event. Although overall accuracies for the two tasks correlated as expected, specific
measures of individual variation in holistic retrieval and mnemonic discrimination did not correlate, suggesting that these two
processes involve distinguishable properties of episodic memory.
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Introduction

Episodic memory binds together the diverse co-occurring el-
ements that make up the specific events of our lives, forming
distinctive and complex events that can guide ongoing behav-
ior. This capacity requires many processes. Past experiences
can share overlapping content, hampering the retrieval of a
specific event against the backdrop of interfering memories.
Thus, remembering a past event with high specificity is opti-
mized by pattern separation processes, whereby similar expe-
riences are assigned to non-overlapping neural codes in the
service of preserving each event’s distinctiveness. Further,

episodic memory retrieval unites various aspects of an event
including where you were, specific people you met, and the
objects that were encountered as an integrated unit (Tulving,
2002). Pattern completion processes enables this network of
relations to be retrieved holistically, such that one constituent
of an event can elicit the retrieval of other elements from the
same event. Computational models posit that the hippocam-
pus instantiates two crucial computations of pattern
separation and pattern completion to support mnemonic dis-
crimination and holistic recollection. Critically, hippocampal
subfields differentially participate in these processes
(Montaldi & Mayes, 2010; Neunuebel & Knierim, 2014;
O’Reilly & McClelland, 1994; Rolls, 2016).

Mnemonic discrimination via pattern separation

Accurate episodic memory requires remembering details with
high specificity, so that they can be mnemonically discrimi-
nated from other similar memories to circumvent catastrophic
interference. Pattern separation aids mnemonic discrimination
by reducing the degree of representational similarity among
overlapping experiences. The granule cells in the dentate gy-
rus (DG) assign distinct representations to similar inputs via
sparse coding, thereby amplifying small differences from the
entorhinal cortex. The pattern-separated signals are then
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projected onto CA3 via the mossy fiber pathway. This mech-
anism helps minimize interference to support new learning
(Marr, 1971; McClelland, McNaughton, & O’Reilly, 1995;
Norman & O’Reilly, 2003).

In humans, one paradigm designed to index the behavioral
outcome of pattern separation is the Mnemonic Similarity
Task (MST). In this paradigm, participants first view a series
of object images. At test, participants are shown targets (iden-
tical to the objects seen at encoding), lures (similar exemplars
of the objects seen at encoding), and foils (new and dissimilar
from those seen at encoding). The theoretically important part
of this task is that it requires high-resolution mnemonic rep-
resentations of studied objects in order to reject the highly-
similar lure items. The ability to make this discrimination may
relate to the DG/CA3 signals of the hippocampus, such that
large responses were evoked by small changes in perceptual
input (Lacy, Yassa, Stark, Muftuler, and Stark, 2011; Reagh
& Yassa, 2014; reviewed in Yassa & Stark, 2011). Evidence
from a study using ultra-high-resolution functional magnetic
resonance imaging (fMRI) and multivariate pattern analysis
further revealed that DG signals represent similar scenes in a
less overlapping fashion compared to other hippocampal sub-
fields and medial temporal regions (Berron et al., 2016).
Causal evidence for a role of the DG in pattern separation
comes from a case study of an individual with selective DG
damage. This individual was impaired at making fine-grained
target-lure discriminations (Baker et al., 2016), corroborating
findings in rodents (Gilbert, Kesner, & Lee, 2001).

Holistic recollection via pattern completion

Retrieving a complex and multimodal episode also necessi-
tates pattern completion, which occurs when a partial cue
reactivates a complete event representation (Marr, 1971;
McClelland, McNaughton, & O’Reilly, 1995; Norman &
O’Reilly, 2003). Pattern completion is thought to rely in part
on hippocampal CA3 network, which receives pattern-
separated inputs from the DG as well as direct inputs from
the entorhinal cortex via the perforant pathway, bypassing the
DG. The CA3 pyramidal cells project onto themselves via the
recurrent collaterals. This mechanism is thought to associate
elements of an event to a shared representation in CA3, there-
by enabling the recapitulation of the conjunctive representa-
tion of an entire event from a partial cue (Guzowski, Knierim,
& Moser, 2004; Rolls, 2016). An important property of pat-
tern completion is that a whole memory can be initiated from
any part of the memory (Rolls, 2016).

One paradigm to test pattern completion in humans relies
on the conceptualization that pattern completion enables the
recovery of the entire event based on a partial cue so that all
elements within an event can be retrieved successfully (or
not). For instance, if retrieving a place successfully reminds
us of the person we met there, it would also likely evoke our

memory of what objects we encountered in the same event.
Findings from multiple studies have demonstrated that young
adults indeed retrieve events in a holistic fashion (Bisby,
Horner, Bush, & Burgess, 2018; Horner & Burgess, 2013,
2014; Ngo, Horner, Newcombe, & Olson, 2019). In the
multi-element paradigm, participants first learned unique
events, each comprised of a scene-person-object triad (e.g.,
kitchen-Obama-hammer). Later, participants performed a
cued recognition task that included every possible cue-test
element combination of each event (e.g., cue: kitchen, test:
Obama), allowing for the examination of retrieval dependency
between different associations of the same event. Evidence for
significant retrieval dependency suggests that complex epi-
sodic memories may be retrieved as integrated units.

Findings on the neural bases of retrieval dependency point
to the involvement of the hippocampus (Horner et al., 2015),
and specifically the CA3 subfield (Grande et al., 2019). In a
multi-element event task variant, participants learned scene-
person-object triads (e.g., kitchen-Obama-hammer) in three
separate trials of pairwise associations (e.g., kitchen-Obama;
Obama-hammer; kitchen-hammer) along the encoding phase.
After having seen the first two pairs of an event (e.g., kitchen-
Obama, Obama-hammer), hippocampal activity during
encoding of the final pair (e.g., kitchen-hammer) was associ-
ated with memory performance on other pairs of the same
event. Furthermore, during cued recognition of pairwise asso-
ciations (e.g., cue A; test B), neocortical activity correspond-
ing to all event elements was reinstated, including the element
that was incidental to a given trial (e.g., element C).
Importantly, the extent of neocortical reinstatement of non-
target elements correlated with hippocampal activity at re-
trieval, consistent with the presence of pattern completion
(Horner et al., 2015; reviewed in Horner & Doeller, 2017).
Crucially, this reinstatement signal is more robust within the
CA3 compared to the dentate gyrus (Grande et al., 2019).
Together, these findings support the idea that the retrieval of
multiple elements of an event given the same cue is mutually
contingent, and that this computation may, in part, rely on
hippocampal pattern completion.

Behavioral relation between pattern separation and
completion

Pattern separation and completion are distinct computations
that may support complementary aspects of episodic capacity:
laying down high-resolution memory traces and holistic re-
trieval of an integrated unit, respectively. If the relevant com-
putations support different episodic features of a memory, do
their individual differences in these mnemonic capacities track
one another? The answer to this question hinges upon the
conceptual link between the behavioral consequences of pat-
tern separation and completion, but thus far, the interpretation
of this link has been mixed.
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In some investigations, the behavioral proxies of pattern
separation and pattern completion are thought to occupy two
ends of a lure discrimination performance scale (Yassa &
Stark, 2011). The inverse operational definitions for pattern
separation and completion may have resulted in the problem-
atic interpretation that an improvement in one process neces-
sarily comes with the impairment in the other (for a discussion
of this criticism, see Hunsaker & Kesner, 2013). For example,
pattern separation failure measured by false alarms in lures
trials on the MST is sometimes interpreted as a gravitation
of the system towards pattern completion (e.g., Holden &
Gilbert, 2012; Kirwan & Stark, 2007; Lacy et al., 2011;
Reagh & Yassa, 2014; Yassa et al., 2010). Although pattern
completion likely underlies false alarm response in lure trials
(Wynn, Ryan, & Buchsbaum, 2020), such an approach in
measuring pattern completion behaviorally may pertain to
specific instances in which the memory judgment reflects a
tradeoff between the two processes.

It is likely that in some cases, pattern separation and com-
pletion play complementary roles in supporting episodic
memory accuracy by establishing distinctive memory traces
and holistic retrieval of complex experiences. The measure-
ment dependency between pattern separation and pattern com-
pletion in paradigms that use similar lures, by design, does not
usually permit independent indices of these processes (but see
Ally, Hussey, Ko, & Molitor, 2013). Thus, investigating the
behavioral relation between pattern separation and pattern
completion requires an operational definition of pattern com-
pletion that is independent of pattern separation failure hall-
marks (e.g., Ally, Hussey, Ko, & Molitor, 2013; Rollins &
Cloude, 2018; Vieweg, Stangl, Howard, & Wolbers, 2015).

Current study

This study tested whether individual differences in holistic
recollection were related to remembering the specific details
of past events. In the same group of participants, we adminis-
tered two tasks that shared the same encoding format.
Participants learned a series of multi-element “events,” each
consisting of a scene-animal-object triad. To operationalize
pattern separation performance, we measured lure classifica-
tion performance using a confusion matrix. We computed
participants’ success in identifying the test events that includ-
ed a lure element, i.e., lure classification. Importantly, a hall-
mark of pattern separation failure is confusing similar events
with one another. Thus, we further corrected lure classification
performance for the specific confusion patterns of
misidentifying lure events as old events when measuring pat-
tern separation. For pattern completion, we measured depen-
dency – the degree to which the retrieval success of different
associations from the same event is mutually contingent (all
accurate or inaccurate).

We hypothesized that the behavioral expression of pattern
separation through lure classification and pattern completion
through holistic retrieval would not correlate with one another,
as they were posited to rely on distinct neural computations. In
addition, we tested whether general episodic memory perfor-
mance that is nonspecific to pattern separation and completion
would correlate between the two tasks. If this relation between
gross accuracy of the two tasks exists, but the correlation
between holistic retrieval and lure classification is not detect-
ed, this result would substantiate the idea that individual dif-
ferences on pattern separation and pattern completion are un-
related. It is important to note, for naming heuristic purposes,
pattern separation and pattern completion tasks here refer to
the dependent variables of interest from each task, without the
assumption that these processes are the only one at play in
each task.

Methods

Participants

A total of 84 (42 female) undergraduate students (Mage =
20.07 years; SD = 2.06, range =18–27) from Temple
University participated for partial course credit. All partici-
pants gave informed consent and reported to have normal or
corrected-to-normal vision. This experiment was completed in
accordance with and approved by the Institutional Review
Board committee at Temple University. This sample size
was determined based on a power analysis to ensure there
was sufficient power (0.80) to detect significant Pearson cor-
relations with a medium effect size (Cohen’s d =0.3) using G*
power (see pre-registration).

Memory task

Materials

Pattern separation task We sampled 390 cartoon images of
distinct scenes (e.g., living room), animals (e.g., panda), and
object (e.g., comb) from Google image search engine. Every
two images were pairs of perceptually similar exemplars (e.g.,
two perceptually similar living rooms). An independent group
of 31 young adults rated the level of similarity of each exem-
plar pair in Qualtrics. We used the ranking results to assign
scene-animal-object triad membership to minimize potential
differences in difficulty levels, i.e., uneven levels of similarity,
among different counterbalanced task versions across partici-
pants (see Online Supplementary Material 1.1). 360 images
were used to create two sets of 60 events (sets A and B) such
that event 1 in set A is made up of element exemplars of event
1 in set B. Four different task versions were created from the
two sets of events to counterbalance the frequency with which
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each event would appear in the study list or in the test list as
target or lure events, across participants. The other 30 stimuli
were used to create ten foil events (events containing elements
that only appear at the test phase), which were fixed across all
counterbalanced task versions.

Pattern completion task We sampled 72 cartoon images of
distinct scenes, animals, and objects (24 per category) from
Google image search engine to construct 24 scene-animal-
object triads. The event assignment of the elements was ran-
domized, with the exception that items with pre-experimental
associations (e.g., books and library) were not assigned to the
same event. The selected stimuli in this task did not overlap
with those used in the pattern separation task.

Procedure

All participants were administered the pattern separation and
pattern completion tasks in a counterbalanced order. Verbal
instructions for both tasks were voice recorded.

Pattern separation task The task procedure comprised of two
encoding test blocks with non-overlapping stimuli between
the two blocks. Each block consisted of 30 encoding and 35
test trials, which led to a total of 60 encoding and 70 test trials.
At encoding, participants were instructed that they would see
many different events, each consisting of a scene-animal-
object triad, and that they should pay close attention to all of
the different elements altogether in each event (see
Figure 1A). A practice phase preceded the encoding phase
in order to acquaint the participants with the task (see Online
Supplementary Material 1.2 for details). At encoding, partic-
ipants viewed the events sequentially (5 s each; 0.5-s intertrial
interval (ITI)).

The test phase followed the encoding phase and consisted
of 35 trials. Fifteen trials were targets – events that contained
all three identical elements as studied events. Five trials were
scene lures –events that contained identical animals and ob-
jects, but the scenes were similar exemplars of those seen at
encoding. Five trials were animal lures –events that contained
the identical scenes and objects, but the animals were similar
exemplars of those seen at encoding. Five trials were object
lures – events that contained identical scenes and animals, but
the objects were similar exemplars of those seen at encoding.
Five trials were foils –events that contained all novel and
dissimilar elements from all studied events (see Figure 1B).
Participants were instructed to categorize five test event types
with five memory judgments (“identical,” “similar scene,”
“similar animal,, “similar object,, and “completely new”) by
pressing the color-coded keys on the keyboard. We provided a
“cheat sheet” with each response and its corresponding color
key to ensure that memory failures were not due
misremembering response-key mapping. There were no

missing responses as the response time was unrestricted. The
memory task took approximately 25 min.

Pattern completion task At encoding, participants were told
that they would see many different scene-animal-object triads
called “events” and that they should pay close attention to all
of the different elements including the scene, animal, and ob-
ject altogether in each event. An example phase preceded the
encoding phase in order to acquaint the participants with the
task (see Online SupplementaryMaterial 1.2 for details). After
the example phase, the encoding phase commenced, in which
participants viewed 24 events sequentially (5 s each; 0.5-s
ITI).

Immediately after the encoding phase, participants per-
formed a self-paced four-alternative-forced-choice task that
consisted of 144 trials. We tested participants on every pos-
sible cue-test combination of each studied event (e.g., cue:
scene; test: animal), resulting in six test trials per event,
which totaled 144 test trials. On each trial, a cue and four
options were presented simultaneously on the screen (see
Fig. 2). Among four options, one was a target (the correct
item) because it belonged to the same event as the cue. The
three lures were same-category elements from different
events. The positions of the correct answer were
counterbalanced across the entire test phase. Across all 24
events, any given two test trials that had overlapping cue
items (e.g., AB

1 and AC
1) or tested items (e.g., BA

1 and CA
1)

only shared one foil item (out of three) with respect to their
event membership. For example, for the AB test trial of
event 1, the foils included the B elements from events 2, 3,
and 4, whereas for the AC trial of event 1, the foils included
the C elements from events 3, 5, and 7 (one B and one C foil
both from event 3). Furthermore, all items served as foils an
equal number of times across all 144 test trials. Participants
were asked to press the four keys on the number keypad
marked with colored stickers that correspond to the four
options presented on the right side of the screen. There were
no missing responses as the response time was unrestricted.
This task took approximately 30 min.

Verbal intelligence

Prior to the memory tasks, all participants were administered
the 45-item American National Adult Reading Test
(AMNART; Grober & Sliwinski, 1991) – an American ver-
sion of the National Adult Reading Test (Nelson, 1982). This
test measures the ability to read aloud irregular words.
Pronunciation errors were tallied and AMNART-estimated
verbal IQ scores were calculated using Grober and
Sliwinski’s formula, which accounts for years of education.
The AMNART was included as a covariate variable for all
statistical analyses.
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Analytical approach

Pattern separation

The behavioral expression of pattern separation is character-
ized by two crucial elements: (1) The detection accuracy and
response precision in classify a similar event as similar; and
(2) The ability to avoid confusing similar events as old events
(reviewed in Yassa & Stark, 2011). To best capture these
features of participants’ responses, we computed the confu-
sion matrix for each participant.

Confusion matrix First, we constructed a 5 × 5 confusion ma-
trix for every participant, with the rows of the matrix
representing the classes of the test items (e.g., target, scene
lure), and the columns representing a participant’s response
frequency. A value in each cell denotes the number of in-
stances in which a participant identified the test items as a
given class. The utility of using a confusion matrix is that it
effectively handles the multiclass problem. It provides classi-
fication accuracy for each class (diagonal cells), and specifies
inter-class confusion, i.e., the frequency with which each class
is mistaken for each of the other (off-diagonal cells, see Fig.
3). Importantly, from these confusion matrices, we can derive
indices of precision and sensitivity for each class (Powers,
2011). Precision of class A is the proportion of correctly iden-
tified trials out of the total number of trials a participant la-
beled the test items as class A (row), therefore capturing the
response precision for a given class by a participant.
Sensitivity of class A is the proportion of correctly identified
trials out of the total number of trials in class A (column),
capturing detection performance (see Fig. 4).

Next, we calculated an F1 score combining both precision
and sensitivity for each class, which used a harmonic mean of
the two indices – a more conservative mean measure as it
punishes the extreme values (Powers, 2011). The F1-scores
range from 0–1, where 0 indicates no discrimination between
a given class from other classes, and 1 indicates a perfect
classification for a given class without missing an item from
a class or misclassifying items from other classes as a given
class.

F1 score ¼ 2*Precision*Sensitivity= Precisionþ Sensitivityð Þ

Confusing lures as old items is the hallmark of pattern
separation failure (reviewed in Yassa & Stark, 2011).
Thus, specific kinds of inter-class confusion are crucial
to succinctly characterize the underlying processes of pat-
tern separation. In order to approximate the specific abil-
ity to pattern separate similar experiences (2), we comput-
ed the frequency at which lures were misclassified as tar-
gets. To do this, we derived a combined measure by
correcting F1 scores for those misclassifications, i.e., we
subtracted the frequency with which lures were
misclassified as targets from the F1 scores of lures, given
that mistaking a similar but different item as an old item is
a hallmark of pattern separation failure (reviewed in
Yassa & Stark, 2011).

& Scene Lure classification = Scene Lure F1 score –
P(“Target ” | Scene Lure)

& Animal Lure classification = Animal Lure F1 score –
P(“Target ” | Animal Lure)

& Object Lure classification = Object Lure F1 score –
P(“Target ” | Object Lure)

a

b
Target FoilLure

515 Scene (5) Animal (5) Object (5)

Fig. 1 (A) A schematic depiction of the multi-element event task proce-
dure for each of the two blocks. In each block, participants first learned 30
events, each comprised of a scene, an animal, and an object. (B) The test

list consisted of 35 events including 15 target, five scene lures, five animal
lures, five object lures, and five foil trials. Note that the stimuli between
the two blocks were non-overlapping
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We took a similar approach with targets and foils. For targets,
we corrected for the interclass confusion in which that an entirely
old event was misclassified as entirely new.1 We computed a
corrected F1 score for targets by subtracting the frequency in
which foils were misclassified as targets from the target F1 score.
For foils, we corrected for the interclass confusion in which an
entirely new event was mistaken as entirely old. We computed a
corrected F1 score for foils by subtracting the frequency with
which foils were misclassified as targets from the foil F1 score.

& Target classification = Target F1 score – P(“Foil” | Target)
& Foil classification = Foil F1 score – P(“Target ” | Foil)

Pattern completion

Estimating retrieval dependency The retrieval dependency
between retrieval successes for different associations within
the same event was computed using the same methods as in

Fig. 2 (A) Examples of the scene-animal-object. (B) Examples of six
retrieval types per event in the test phase. Each element of a studied
event took turns serving as the cue (item presented on the left side of
the screen) and the tested element (one of the four options presented

inside the red box). (C) A schematic depiction of how the proportion of
joint retrieval for ABAC pairs was computed for each participant by
concatenating the proportion of events in the blue outlined boxes out of
the total number of events
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previous studies (Horner & Burgess, 2013, 2014; Horner
et al., 2015; Bisby et al., 2018). Six 2 × 2 contingency tables
for the data and the predicted independent model were

computed for each participant based on their retrieval accura-
cy for each pairwise association in order to assess dependency
between retrieving two elements when cued by the remaining

Fig. 4 A schematic depiction of the formulas derived from the confusion matrices (A) and the distribution of precision and sensitivity for each class of
test item (B) for the pattern separation task

Fig. 3 (A) A 5 × 5 confusion matrix was constructed for each participant
to illustrate the frequency of response (column) to each class of test item
(row). (B) A group-level confusion matrix with classification accuracy

(diagonal cells) and errors (off-diagonal cells). Color intensity illustrates
the classification frequency in each cell
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common element within an event (ABAC; i.e., cue with A and
retrieve B, and cue with A and retrieve C), and the dependen-
cy between retrieving a common item when cued by the other
two elements within an event (BACA; i.e., cue with B and
retrieve A, and cue with C and retrieve A). Each 2 × 2 con-
tingency table for the data, for every participant, shows the
proportion of events that fall within the four categories: both
AB and AC are correct or incorrect, AB correct and AC incor-
rect, and vice versa. To measure retrieval dependency, we
computed the proportion of joint retrieval for the data – de-
fined as the proportion of events in which both associations
were either correctly or incorrectly retrieved (cells 1, 1 and 2, 2
of each contingency table; see Fig. 2C).We then averaged this
measure across six contingency tables (three tables for the
ABAC analysis, for each element-type, and three tables for
the BACA analysis, for each element-type) for each
participant.

The independent model estimates the degree of statistical
dependency if retrieval success for different associations with-
in the same event is independent from one another, given a
participant’s overall accuracy. If retrievals of event pairs are
independent, the probability of the successful retrieval for
both AB and AC is equal to PAB*PAC, where PAB is the prob-
ability of retrieving B when cued by A across all events, and
similarly for PAC (see Table 1 for full details). The indepen-
dent model serves as a predicted baseline for which we com-
pare the proportion of joint retrieval in the data. Given that the
proportion of joint retrieval in the data scales with accuracy,
the main index of retrieval dependency was the difference
between the joint retrieval in the data and independent model
for each participant – referred to as dependency. If dependen-
cy is significantly greater than zero, this provides evidence for
significant retrieval dependency (Horner & Burgess, 2014).

Statistical analyses

All planned statistical analyses were performed using JASP.

Data availability The stimuli in the memory tasks (https://osf.
io/pjy28/) and second-level data (https://osf.io/5k8jx/) are
publicly available through the Open Science Framework.

Results

Pattern separation task

Overall accuracy

Overall accuracy was defined as the proportion of correct
responses out of 70 total test trials. On average, young adults’
overall accuracy was 0.56 (SE = 0.02), which was significant-
ly above chance (20% given that they were five response
choices), t(83) = 20.98, p < .001, 95% CI for mean difference
[0.32, 0.39], d = 2.29. There were no sex differences in overall
accuracy, t(82) = -0.62, p = .54, 95% CI for mean difference [-
0.09, 0.05], d = -0.13, BF01 = 3.72. Overall accuracy did not
significantly differ between participants who completed the
pattern separation task first or second, t(82) = -0.41, p = .69,
95% CI for mean difference [-0.08, 0.05], d = -0.09, BF01 =
4.09. Accuracy on this task and verbal intelligence measured
by AMNART showed a significant positive correlation, r(82)
=0.25, p = .02.

Frequency of each participant’s response to each class item
was calculated in a confusion matrix (see Fig. 3). Precision
and sensitivity rates were then calculated for each class of the
test item for each participant (see Fig. 4). Finally, we corrected
F1 score (harmonic mean of precision and sensitivity) for each
class to account for specific inter-class confusion to better
characterize discriminability (see Fig. 5).

There was a main effect of test item types,F(4, 83) = 75.56,
p <.001, partial η2 = 0.48. Post hoc comparison with
Bonferroni correction revealed that foil (M = 0.53, SE =
0.04) did not differ from target classification (M = 0.45, SE
= 0.04), t = -2.32, p = 0.23, 95%CI for mean difference [-0.18,
0.02], d = -0.25, but was greater than scene lure (M = 0.38, SE
= 0.04), t = -3.76, p = .003, 95%CI for mean difference [-0.26,
-0.04], d = -0.41, animal lure (M = 0.15, SE = 0.04), t = -9.08,
p < .001, 95% CI for mean difference [-0.50, -0.26], d = -0.99,
and object lure (M = -0.12, SE = 0.04), t = -13.28, p < .001,
95% CI for mean difference [-0.79, -0.51], d = -1.45. Target
classification did not differ from scene, t = 1.79, p = 0.77, 95%
CI for mean difference [-0.04, 0.18], d = 0.20, but was greater
than animal, t = 6.64, p < 0.001, 95% CI for mean difference
[0.17, 0.43], d = 0.73, and objects, t = 12.62, p < .001, 95% CI
for mean difference [0.44, 0.69], d = 1.38.

Lure classification differed across the stimulus categories.
Participants were better at classifying scene lures than animal
lures, t = 5.62, p < .001, 95% CI for mean difference [0.11,
0.35], d = 0.61, and object lures, t = 11.77, p < .001, 95% CI
for mean difference [0.38, 0.62], d = 1.28. Animal lures were
classified better than object lures, t = 5.49, p < .001, 95% CI
for mean difference [0.13, 0.40], d = 0.60. It is worth noting
that the similarity rating is higher for object lure than for scene
lure (see Online Supplementary Material 1.1). Thus, differ-
ences in lure classification between scenes and objects may

Table 1 Contingency table for the predicted independent model for
proportion of correct and incorrect cued recognition over the total
number of events for elements B and C when cued by A

Cued by A Retrieving B

Correct Incorrect

Retrieving
C

Correct ΣN
i¼1PAB PAC ΣN

i¼1PAC 1−PABð Þ
Incorrect ΣN

i¼1PAB 1−PACð Þ ΣN
i¼1 1−PABð Þ
1−PACð Þ
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be due to the uneven perceptual similarity of the exemplar
pairs between these two categories.

Pattern completion task

Overall accuracy

Overall accuracy is defined as the proportion of target selec-
tion across 144 test trials. Young adults performed significant-
ly greater than chance level (0.25),M = .69, SE = 0.02, t(83) =
18.21, p < .001, 95% CI for mean difference [0.39, 0.49], d =
1.99 (see Fig. 6A). There were no sex differences in overall
accuracy, t(82) = 0.44, p = .66, 95% CI for mean difference [-
0.08, 0.12], d = 0.10, BF01 = 4.04. Overall accuracy did not
significantly differ between participants who completed the
pattern completion task first or second, t(82) = 1.14, p = .26,
d = 0.25, BF01 = 2.48. Accuracy and verbal intelligence mea-
sured by AMNART showed a trend towards a positive corre-
lation, r(82) = 0.18, p = .10.

Retrieval dependency

To test for evidence of holistic recollection, paired-samples t-
tests were conducted to examine whether dependency in the
data exceeded the independent retrieval model. As expected,
we found significant dependency, such that dependency in the
data (M = 0.85, SE = 0.02) exceeded the independent retrieval
model (M = 0.72, SE = 0.02), t(83) = 12.35, p < .001, 95% CI

for mean difference [0.11, 0.15], d = 1.35 (see Fig. 6B). These
results replicated previous studies showing significant retriev-
al dependency in young adults using different stimuli (e.g.,
Bisby et al., 2018; Horner & Burgess, 2013, 2014; Ngo
et al., 2019). Together these studies demonstrate that memo-
ries for multi-element events may be represented as integrated
episodic units.

We also tested whether different stimulus categories
yielded uneven retrieval dependency. It has been suggested
that scenes may play a robust cuing role in episodic memory
(Robin, 2018). Thus, it is possible that scenes may yield stron-
ger dependency compared to other element categories. To test
this possibility, we calculated dependency scores for associa-
tions that shared the same cue (ABAC) or tested item (BACA)
separately for each category. A one-way ANOVA showed a
nonsignificant effect of category on dependency, F(2, 166) =
1.21, p = 0.30, partial η2 = 0.01, suggesting that retrieval
dependency did not differ among the three categories of
elements.

Pattern completion and pattern separation
correlations

Dependency and lure classification correlations

To probe the behavioral relation between pattern separation
and completion, we tested whether individual differences in

Fig. 6 The distribution of the overall accuracy (A) and the proportion of
joint retrieval of the data and independent model (B) of the pattern
completion task. Overall accuracy in the pattern completion task is the
proportion of correct trials across 144 test trials. The proportion of joint
retrieval in the data and the independent model was calculated from the
contingency table for each participant
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The F1 score is the harmonic mean between the sensitivity and precision
indices for a given class of test item derived from each participant’s
confusion matrix. F1 scores were adjusted for specific misclassification
patterns (e.g., misclassify lures as targets, see text)
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lure classification and dependency co-varied with one another.
We averaged the adjusted F1 scores from the three lure cate-
gories to yield one overall lure classification index.
Dependency was a difference between the proportion of joint
retrieval in the data and the independent model of retrieval. A
partial correlation between lure classification and dependency,
with AMNART as a covariate, revealed a nonsignificant cor-
relation, r(81) = .12, p = .28, 95% CI [-0.09, 0.32], BF01 =
4.05 (see Fig. 7A).

We further tested the possibility that pattern separation and
completion only show related performances at the category-
specific level, we correlated lure classification and dependen-
cy within each category separately (scene, animal, object; see
pre-registration). Lure classification and category-specific de-
pendency did not correlate for scene, r(81) = .14, p = 0.20,
95% CI [-0.07, 0.35], BF01 = 3.22, animal r(81) = .08, p =
0.45, 95% CI [-0.13, 0.29], BF01 = 5.56, or object, r(81) = -
0.02, p = .89, 95% CI [-0.23, 0.20], BF01 = 7.27, after
partialing out AMNART (see Fig. 7B).

These results suggest that lure classification and holistic
recollectionmay be behaviorally separable processes such that
individual differences in one facet of episodic capacity do not
track those in the other.

Pairwise associative memory and target classification
correlation

Next, we reasoned that indices of general episodic memory
performance – nonspecific to retrieval dependency or lure
classification – should correlate between the two tasks as they
both tap general episodic capacity. For the pattern separation
task, lure classification specifically indexes pattern separation,
whereas target classification indexes the abilities to recognize
old events. For the pattern completion task, dependency in-
dexes holistic recollection, whereas overall accuracy indexes
pairwise associative recognition, irrespective of event mem-
bership. Both of these processes are general memory perfor-
mances that are not uniquely attributed to pattern separation or
pattern completion. Therefore, we predicted that overall accu-
racy in the pattern completion task and target classification in
the pattern separation task would relate to one another. We
treated this analysis as a “control” correlation analysis to en-
sure that the nonsignificant correlation between lure classifi-
cation and retrieval dependency was not due to potential su-
perficial differences between the two tasks, or due to power
issues (see pre-registration). Indeed, they were strongly corre-
lated, r(81) = .51, p < .001, after controlling for AMNART
(see Fig. 7A). Crucially, this correlation significantly
exceeded the dependency versus lure classification correla-
tion, Z = 2.79, p < 0.01.

In our pre-registration, we planned to assess pattern sepa-
ration performance using the raw lure identification rate (i.e.,
identifying a test event that contained a similar scene to a

scene lure trial). However, raw lure identification does not
adjust either for response bias or for the specific false alarm
rate relevant to pattern separation (i.e., misclassifying a lure as
a target). Thus, we employed a confusion matrix approach to
estimate pattern separation. The correlational results using the
pre-registered approach are reported in Online Supplemental
Material 2.2.

General discussion

The hippocampus supports episodic memory capacity by (1)
preserving distinctive features of specific past experiences,
and (2) by recapitulating constituent parts of an episodic mem-
ory altogether at retrieval. Pattern separation and completion
are the underlying neurocomputationally distinct processes
that work in concert to support different aspects of episodic
memory capacity. This study tested whether individual differ-
ences in the behavioral indices of these processes would relate
to each other using an individual differences approach. In a
novel combination of behavioral tasks of pattern separation
and completion, we show that retrieval dependency and lure
classification indeed do not track each other. These findings
demonstrate a degree of inter-independence of the two pro-
cesses, suggesting that different hippocampal computations
play complementary roles in supporting different facets of
episodic memory. The nonsignificant correlation between ho-
listic recollection and lure classification aligned with our pre-
dictions, and was supported by an analysis using Bayes fac-
tors, which suggests that the null hypothesis is four times more
likely than the alternative hypothesis. Further, gross perfor-
mances on the two tasks – nonspecific to pattern separation
and completion – were significantly correlated. Importantly,
the gross-performances correlation was greater than that of the
dependency versus lure classification correlation. These re-
sults suggest that certain aspects of the two tasks tap general
episodic capacity, and that our null finding was unlikely to be
due to power issues.

Our findings shed light on the debate on the computational
interplay between pattern separation and pattern completion
(for a discussion, see Hunsaker & Kesner, 2013). The behav-
ioral dissociation between lure discrimination and retrieving
old events from partial cues aligns with neuropsychological
findings in a patient with selective dentate gyrus damage
(Baker et al., 2016). As expected, this patient was severely
impaired at lure discrimination on the MST. In addition to
the MST, the authors administered the Memory Image
Completion (MIC) task, which evaluates recognition memory
for scenes (old and new) presented at varying degrees of com-
pleteness during test. Interestingly, the patient was spared on
recognizing old scenes at all levels of completeness, suggest-
ing that abilities to complete a true old memory from partial
cues was neither impaired or enhanced compared to healthy
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controls. However, he was impaired in correctly rejecting nov-
el scenes at all levels of completeness compared to healthy
controls, suggesting an increased tendency to pattern complete
in the presence of noisy cues. Based on these findings, DG
damage appears to be linked to the selective deficits in lure
discrimination (i.e., poor lure rejection in both the MST and
MIC), while sparing the ability to reconstruct old experience
based on partial cues (i.e., intact target recognition in the
MIC). This neuropsychological evidence that an impairment
in lure discrimination does not necessarily come with an im-
pairment (or increase) in pattern completing an old event con-
verges with our current findings in healthy adults.

Our study employed separate paradigms from the pattern
separation and completion literature that provide independent
behavioral indices. We implemented critical methodological
and analytical modifications to specifically probe their behav-
ioral relation. Methodologically, we equated the encoding for-
mat of both tasks using multi-element events, departing from
other MST-task variants, which typically test individual items

(e.g., as reviewed in Yassa & Stark, 2011). This design
allowed us to examine the pattern separation-pattern comple-
tion relations at the category-agnostic and category-specific
levels. Analytically, we leveraged computational principles
from confusion matrices to extract one index of lure classifi-
cation, accounting for hit rate, response precision, and false
alarm.

It is important to note that there is variation in the behav-
ioral paradigms designed to approximate pattern completion.
Based on the definition of pattern completion as recovering an
old experience from partial or degraded cues, some tasks have
operationalized partial cues as fragments of learned scenes
(Vieweg et al., 2015), whereas in the multi-element event task,
partial cues are defined as elements within complex events
(Horner & Burgess, 2013, 2014). Others have operationalized
degraded cues as noisy cues through the use of similar lures
that include both the original input and added novel features
(e.g., perceptually similar object exemplars) (Yassa & Stark,
2011). The nature of the cues presented at test may impact the

Fig. 7 Scatterplots of the standardized residuals illustrating the relation
between dependency on the pattern completion task and lure
classification on pattern separation task (A, left), between associative
memory on the pattern completion task and the target classification on

the pattern separation task (A, right), and between dependency and lure
classification for each stimulus category separately (B). All scatterplots
depict the partial correlations after partialing out AMNART score
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degree to which pattern completion is engaged (O’Reilly &
McClelland, 1994). Importantly, it has been suggested that the
use of partial cues as opposed to noisy cues in behavioral
paradigm may preferentially engage pattern completion
(reviewed in Liu, Gould, Coulson, Ward, & Howard, 2016).

Further, when assessing pattern completion behaviorally, it
may be important to consider the difference between a gravi-
tation towards pattern completion in the presence of noisy
cues and the capacity to pattern complete a true old event
based on partial cues. Models of aging propose that over-
activity of the CA3 auto-associative function leads to the over-
expression of old information at the expense of discriminating
new information (Wilson, Gallagher, Eichenbaum, & Tanila,
2006). Relative to young adults, older adults show a greater
tendency to falsely recognizing lures as old scenes (Stark,
Yassa, Lacy, & Stark, 2013; Vieweg et al., 2015; Yassa and
Stark, 2011). At the same time, older adults are also less likely
to pattern complete target items as old based on partial inputs
(Vieweg et al., 2015). A reduction in the abilities to recover
the learned experiences from partial cues may co-occur with
an increase in a bias towards pattern completion old events
when in the presence of noisy cues. However, the inferences
of pattern separation and completion based on one behavioral
continuum of lure discrimination performance may not make
this distinction obvious.

Our work presented the initial evidence that capacities of
remembering a past event in its totality and remembering indi-
vidual elements with high resolution do not scale with one an-
other in healthy young adults. These processes likely play com-
plementary roles and contribute to distinct properties of complex
episodic capacities. Interpretation of pattern completion using
behavioral measures would also benefit from a systematic ex-
amination of whether tasks designed to assess pattern comple-
tion correlate with one another and how each may relate to
pattern separation. Future research should tackle a full treatment
of pattern separation and pattern completion dissociation by
combining behavioral paradigms and neuroimaging methods.
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