
Journal of Experimental Child Psychology 192 (2020) 104774
Contents lists available at ScienceDirect

Journal of Experimental Child
Psychology

journal homepage: www.elsevier .com/locate/ jecp
How many apples make a quarter? The challenge
of discrete proportional formats
https://doi.org/10.1016/j.jecp.2019.104774
0022-0965/� 2019 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail address: keko.begolli@csulb.edu (K.N. Begolli).
Kreshnik N. Begolli a,⇑, Julie L. Booth b, Corinne A. Holmes c, Nora S. Newcombe b

aCalifornia State University, Long Beach, Long Beach, CA 90840, USA
b Temple University, Philadelphia, PA 19122, USA
c Trinity College Dublin, Dublin 2, Ireland

a r t i c l e i n f o a b s t r a c t
Article history:
Received 10 May 2019
Revised 13 August 2019
Available online 2 January 2020

Keywords:
Proportional reasoning
Spatial cognition
Mathematical development
Rational numbers
Individual differences
Nonsymbolic reasoning
Proportional judgments are easier for children in continuous for-
mats rather than discretized ones (e.g., liquid in a beaker vs. in a
beaker with unit markings). Continuous formats tap a basic sense
of approximation magnitude, whereas discretized formats evoke
erroneous counting strategies. On this account, truly discrete for-
mats with separated objects should be even harder. This study
(N = 565 7- to 12-year-old children) investigated that prediction.
It also examined whether the format effects vary with children’s
fraction knowledge (FK; part–whole relations, computation, and
fraction number line estimation). As found previously, discretized
formats were more challenging than continuous ones; as predicted,
discrete formats were yet harder. The format effect interacted with
FK. Low-FK children were above chance only with continuous for-
mats, medium-FK children struggled with discrete formats only,
and high-FK children did well with all three formats.
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Introduction

Proportional reasoning is key for mathematical and scientific achievement as well as for navigating
everyday life situations (National Council of Teachers of Mathematics, 2000; National Mathematics
Advisory Panel, 2008; Siegler, Fazio, Bailey, & Zhou, 2013; Spinillo & Bryant, 1991). At its core,
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proportional reasoning is the ability to reason about part–whole relations—both symbolic and non-
symbolic (Boyer, Levine, & Huttenlocher, 2008; Fischbein & Gazit, 1984; Howe, Nunes, & Bryant,
2011; Piaget & Inhelder, 1974). Proportional reasoning is common in professional contexts such as
medicine (e.g., assessing antecedents of disease), anthropology (e.g., comparing bone proportions of
human fossils with modern Homo sapiens), physics (e.g., density, temperature, velocity), chemistry
(e.g., chemical compositions), and economics (e.g., currency exchange). It is also used in everyday con-
texts such as shopping (e.g., buy two and get one free), gas usage (e.g., miles per gallon), and cooking
(e.g., three eggs for two portions).

We now have a good deal of knowledge concerning how children and adults represent and manip-
ulate proportions (DeWolf, Bassok, & Holyoak, 2015; Fischbein & Gazit, 1984; Hoffrage, Gigerenzer,
Krauss, & Martignon, 2002; Howe et al., 2011; Hurst & Cordes, 2018; Mazzocco & Devlin, 2008;
Piaget & Inhelder, 1975; Siegler, Thompson, & Schneider, 2011; Spinillo & Bryant, 1999; Tian &
Siegler, 2018; Van Dooren, Lehtinen, & Verschaffel, 2015; Wason, 1968; Zhu & Gigerenzer, 2006).
There is consensus that children can reason about proportions earlier in development if they are pre-
sented nonsymbolically (i.e., spatially/visually) rather than symbolically (i.e., numerically). Most stud-
ies with children have used a proportional equivalence task in which children match equivalent
proportions going from a smaller to a larger absolute size or vice versa (e.g., matching spatialized
ratios of 1:2 [1 part chocolate syrup and 2 parts milk] to 2:4 [2 parts chocolate syrup and 4 parts milk])
(e.g., Boyer & Levine, 2012, 2015).

Children are more successful when presented with proportions in continuous formats (e.g., liquid
in a beaker) than in discretized formats (e.g., liquid in a beaker with markings) (Boyer & Levine, 2012,
2015; Jeong, Levine, & Huttenlocher, 2007; Spinillo & Bryant, 1999). Visual demarcations in the dis-
cretized formats have been argued to prompt children to engage in erroneous counting strategies.
For example, they may match a ratio of 3:4 (juice to water) with 3:6 because of the shared numerator
(absolute or extensive amount of juice), or they may match 3:9–4:8 because of the shared extensive
(absolute) size (3 + 9 = 12 and 4 + 8 = 12) of the ‘‘container” (Boyer & Levine, 2012, 2015; Boyer et al.,
2008). Counting seems to disengage children from a more intuitive manner of representing propor-
tions as analogue magnitudes (e.g., relations between spatial areas) (Barth, Baron, Spelke, & Carey,
2009; Clearfield & Mix, 1999; Leibovich, Katzin, Harel, & Henik, 2017). Continuous formats allow them
to maintain focus on intensive (relative or proportional) magnitude representations (Jirout &
Newcombe, 2019), which are arguably more automatic and basic than integers (Leibovich et al.,
2017). Counting is also likely to impede children from engaging in the advantageous heuristic of spa-
tial scaling—the ability to mentally enlarge or shrink spatial representations (e.g., mentally enlarging a
pocket map to navigate a real-world street).

Spatial scaling appears to be broadly involved in thinking about magnitude concepts and propor-
tional reasoning (Boyer & Levine, 2012; Möhring, Frick, & Newcombe, 2018; Möhring, Newcombe, &
Frick, 2014, 2015; Möhring, Newcombe, Levine, & Frick, 2016; Vasilyeva & Huttenlocher, 2004;
Vasilyeva, Duffy, & Huttenlocher, 2007). Spatial scaling and proportional scaling recruit overlapping
cognitive processes. Scaling requires understanding that the distances on a pocket map and in a
real-word space maintain a constant proportion (Möhring et al., 2018). Evidence from both map scal-
ing (e.g., scaling relative positions on a map between the map and a target) and proportional scaling
(e.g., scaling between two equivalent proportions) suggests that errors increase with increases in the
magnitude of the scale factor (Boyer & Levine, 2012; Vasilyeva & Huttenlocher, 2004). These errors
seem to occur because mentally transforming one proportion to match another is a cognitively taxing
process. Greater transformations in other spatial tasks—such as angular degree in mental rotation
(Shepard & Metzler, 1971) and path length in navigation (Kosslyn, 2005)—have consistently been
shown to impose higher cognitive costs, in terms of error rates and/or response latencies, due to their
demands on dynamic mental imagery. In addition, children’s (and adults’) bias toward extensive
(absolute) mental representation of magnitudes seems to increase with scaling (or higher quantities)
and further deter them from maintaining (and/or encoding) the intensive quantity of the target pro-
portion, exacerbating their errors (Jäger & Wilkening, 2001; for review, see Newcombe, Möhring, &
Frick, 2018).

On these accounts, entirely discrete representations, in which every unit representing the parts is
separate and spatially separated from the whole, may be very challenging. Although discretized
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representations seem to lead children to count, the Gestalt properties of entirely separated units that
each have a ‘‘common fate” should be much more likely to evoke counting (Mandler & Shebo, 1982;
Mix, Huttenlocher, & Levine, 2002). Thus, children may find it difficult to represent discrete formats as
proportions (Singer-Freeman & Goswami, 2001) and may attempt to count (due to the representations
being discrete). Even if children attempt to invoke a proportional (intensive) representation, if they
simultaneously count, they will be distracted.

Although prior studies have sometimes called discretized formats ‘‘discrete” (Boyer & Levine,
2012), offering a choice between a focus on continuous magnitude and counting demarcated units
is different from inviting the counting of spatially separated objects. Children may be more tempted
to count such objects, which are the focus of a great many counting exercises, instead of computing
magnitude ratios over area or volume, and they may be less likely to use dynamic mental imagery
to approximate relative magnitude (Barth et al., 2009; Clearfield & Mix, 1999). Understanding the dis-
tinction between discretized and discrete displays could provide important insight into whether the
Gestalt of discrete perceptual displays that ‘‘force” children to count leads them to make more propor-
tional reasoning errors than displays that can more easily be perceived to represent analogue
magnitudes.

Adult data provide further insight into discrete formats. In a series of experiments with adults,
DeWolf et al. (2015) used all three representations (continuous, discretized, and discrete), although
not on proportional equivalence tasks. They asked about format preferences when matching to a dec-
imal (e.g., .75) or fraction (e.g., 3/4) (Experiment 1) or when evaluating ratio relationships or solving
relational tasks (Experiments 2–4). They found that adults prefer discrete and discretized formats for
representing fractions, for evaluating ratio relationships with fractions and decimals, and for solving
problems involving fractions (DeWolf et al., 2015). Of course, such preferences might not shed light
on how children gain adult understanding.

In sum, previous studies have not systematically compared children’s performance with continu-
ous, discretized, and discrete formats on a proportional reasoning task (see Fig. 1). Conducting such
comparisons was the first purpose of the current study. Investigating the three formats together in
samples of children also allows a systematic examination of interactions with other task features.
For example, Boyer and Levine (2012) found that increases in scale factor led to decreases in perfor-
mance, perhaps because larger proportional transformations imposed greater cognitive demands. Yet
the relation between format and scale factor might not be consistent across all three formats. In addi-
tion, previous work suggests that children are more accurate when the foil constitutes a denominator
match with the target proportion than when the foil matches its numerator. In the current study, we
systematically compared the three formats at three scaling magnitudes (1.5/.67, 2/.50, and 3/.33) and
controlled for directionality (enlarging or shrinking) and foil type (numerator or denominator).

A second purpose of this study involved the relation of format effects to formal knowledge of sym-
bolic fractions—that is, part–whole knowledge, symbolic manipulations, and fraction number line esti-
mation. Prior studies have investigated the developmental trajectories of proportional reasoning and
related spatial skills by grouping children based on age or grade level (Boyer & Levine, 2012; Piaget &
Inhelder, 1975; Spinillo & Bryant, 1999). However, age and grade level might not always serve as opti-
mal proxies for developmental paths in diverse populations because environmental influences (e.g.,
socioeconomic status) may promote or slow cognitive and academic growth (Fryer & Levitt, 2004;
Hanushek & Woessmann, 2012; Levine, Vasilyeva, Lourenco, Newcombe, & Huttenlocher, 2005).
Training can greatly influence performance of spatial representations of proportions (Goswami,
1995; Singer-Freeman & Goswami, 2001). Thus, grouping children by age or grade may combine chil-
dren at different developmental levels into the same category, making it difficult to detect progres-
sions in proportional ability. An alternative means of studying developmental trajectories is to
group children by levels of the target skill under study instead of age or grade level. We used fraction
knowledge, which has been found to be closely related to proportional equivalence judgments
(Hansen et al., 2015). We grouped children into tertiles of low, medium, and high performers based
on their prior knowledge of number line estimations and part–whole concepts and procedures. Using
tertiles avoids the problems with median splits, in which children just below or above the median may
be quite comparable, while maintaining statistical power to detect interactions.



Fig. 1. A contrast of stimuli previously used in the literature and our materials, all of which examine children’s performance on
proportional equivalence tasks with visually depicted proportions.
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Method

Participants

Participants were 565 children (268 boys and 293 girls; 4 children did not report their gender)
recruited from seven schools (five private [343 children] and two public charter [222 children]) in
the metropolitan area of Philadelphia, Pennsylvania, in the eastern United States. The data were col-
lected in May and June of 2017. There were 182 participants in third grade (92 boys and 89 girls, 1
missing gender information), 194 in fourth grade (98 boys and 94 girls, 2 missing gender information),
and 189 in fifth grade (78 boys and 110 girls, 1 missing gender information). The mean age at each
grade level wasM3 = 8;6 (years;months),M4 = 9;7, andM5 = 10;7. The schools fromwhich the children
were drawn ranged from low-income inner-city schools (90% African American families) to those with
children from working-class, middle-class, and upper-class families (80% White families). Based on
demographic data from school websites, we estimated the overall sample as approximately 62%
White, 28% Black, 5% Hispanic, 3% Asian, and 2% multiracial or other. Approximately 44% of children
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were eligible for free or reduced-cost lunch. Principals of at least 30 private and charter schools were
asked via e-mail to participate in the study, and all children in those schools were eligible to partic-
ipate. All children had parental consent and gave individual assent to participate. Participants who
were missing more than half of their data for each measure were excluded from analyses, but such
missing information was rare: 3 participants in the proportional equivalence task and 1 participant
in the fractions concepts measure (4 participants in total).
Procedure

Participants were administered the paper-and-pencil-based proportional equivalence task and
mathematics assessment during their regular class hours in their individual classrooms, in neighbor-
ing classrooms, or in the school cafeteria. First, children in all the format types read the instructions
together with the experimenter, who introduced them to Goldilocks through the first page of the
packet (see Appendix A). The experimenter explained that Goldilocks likes her chocolate milk ‘‘just
right,” and the container(s) above Goldilocks showed how Goldilocks likes her chocolate milk to taste.
The experimenter guided children to follow the instruction page (see Appendix A) to see which parts
represented milk and which parts represented chocolate syrup; no gestures were used and, as can be
seen from Appendix A, the arrows do not point at any individual unit in the discrete format type. Chil-
dren were instructed to help Goldilocks choose the correct chocolate syrup/milk mixture that would
taste ‘‘just right” and selected one of two options. To ensure that children understood they should not
be matching based on one of the commonmisconceptions stemming from counting strategies and that
they understood this was a proportional task, in addition to language that was previously used, we
also added an example with a correct answer. After the experimenter gave an example of the task
(see Appendix A), children completed 24 proportional equivalence items, 6 per page, and then contin-
ued on to the mathematics assessment. When they reached the end of the packet, the last page asked
children to write down their age, gender, and grade level. If children asked questions about the pro-
portional equivalence task or the mathematics problems, the experimenter read the instructions or
problem prompt together with the children.
Design

Proportional equivalence task.
Within each classroom and grade level, children were randomly assigned to one of three propor-

tional equivalence tasks that contained continuous, discretized, or discrete spatial representations
(see Fig. 1). Trial types were identical across spatial representations and were selected from Boyer
and Levine (2012, Experiment 1) (see Appendix B). There were 24 randomly sequenced trials com-
posed of six trial types that varied by scale factor and scaling direction. The scale factor increased
when scaling up or decreased when scaling down by three separate magnitudes. When scaling up
the magnitude of the proportion increased by 1.5, 2, and 3, and when scaling down the magnitude
decreased by .33, .50, and .67. Each magnitude factor was presented four times, with half of the trials
scaled up (e.g., 1/3–3/9) and half scaled down (e.g., 3/9–1/3). Scaling up and scaling down were at a
symmetrical magnitude (e.g., .33 vs. 3 both are at 3:1). As in Boyer and Levine (2012), all items
involved fractions that reduced to 1/3, 1/4, 2/3, or 3/4 chocolate syrup and milk parts.

The foil alternative was always on the opposite side of the half-mark boundary as the target pro-
portion to facilitate comparison between the two choice alternatives (Spinillo & Bryant, 1991). Foils
were manipulated such that half of the trials involved a numerator match with the target and half
involved a denominator match (see Appendix B). Numerator and denominator foils were evenly dis-
tributed such that within the 4 trials per scale factor, 2 contained numerator foils and 2 contained
denominator foils. The denominator and numerator foils were chosen because previous work has
shown that children tend to match based on absolute size of the container or number of units (i.e.,
chocolate syrup + milk, denominator match) or the absolute size or number of units of the factor
believed to change the taste (i.e., chocolate syrup, numerator match) rather than the proportional rela-
tion (Boyer & Levine, 2012, 2015; Boyer et al., 2008; Piaget & Inhelder, 1975).
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Fraction assessment
All participating children at all grade levels completed the same mathematics problems. There

were 61 items in total, with 45 items measuring formal fraction knowledge concepts and 16 items
measuring fraction number line estimation (see Appendix C for examples). We standardized all items
and combined the standardized scores from both part–whole and number line estimation tasks into a
composite score of overall fraction knowledge. The Cronbach’s alpha reliability coefficient of all items
combined was .921 across all grades (.901 at third grade, .920 at fourth grade, and .929 at fifth grade).

Fraction concepts. In total, 11 items measured children’s understanding of part–whole representations
(Hecht & Vagi, 2010, 2012), namely to shade an area based on a fraction (3 items: 1/3, 2/8, and 1/2),
represent a shaded area with symbolic fraction notation (3 items: 3/5, 2/4, and 1/4), and circle ‘‘yes” or
‘‘no” to fraction addition equations involving the sum of two discretized picture representations of
fractions (5 items; e.g., 1/3 + 2/6 = 4/6).

In total, 20 items measured children’s understanding of fraction equivalence or their ability to com-
pare fraction magnitudes (Schumacher, Namkung, Malone, & Fuchs, 2012; Siegler et al., 2011), where
children needed to circle which fractions are equal to 2/4 by circling ‘‘equal” or ‘‘not equal” (6 items:
1/2, 2/3, 3/6, 3/4, 4/4, and 4/8), circle which fractions are ‘‘larger” or ‘‘smaller” than 4/12 (4 items: 4/10,
4/16, 2/12, and 8/12), and mark greater than (>), less than (<), or equal to (=) on two fractions (10
items: 2 items with equal numerators, 2 items with equal denominators, 2 items with equal fractions,
2 items with number symbol magnitudes that matched the size of the proportion such that greater
numbers in the fraction corresponded to a greater proportion and vice versa, and 2 items where there
was a mismatch between the number magnitude and proportion).

In total, 13 items were nested within six word problems and were designed to assess children’s
conceptual understanding of fractions (Begolli & Richland, 2016; Brown & Quinn, 2006; Paik & Mix,
2003) involving fraction subtraction (6 items), division (1 item), comparison (5 items), and part–whole
picture ? symbol representation (1 item).

There was 1 item that measured children’s ability to subtract mixed numbers (2–4/5–1/5 = ?).
Fraction concept items were scored for accuracy; if correct, children received 1 point per item and

the sum score of all items was used in further analyses. Alpha reliability was .85 overall (.87 at third
grade, .88 at fourth grade, and .90 at fifth grade).

Fraction number line estimation. For fraction number line (FNL) estimation tasks (drawn from Fuchs
et al., 2013; Siegler et al., 2011), children were first shown how to indicate a fraction’s location on a
number line for two fraction symbols (1/2 and 5/6) and one fraction word (half) and were then asked
to solve 16 items on their own; of these, 10 items involved fraction symbols (1/2, 3/4, 1/4, 2/4, 1/3, 2/5,
3/8, 2/3, 9/10, and 1/7) and 6 items involved fraction words (half, a quarter, two quarters, a third, three
quarters, and an eighth), which were displayed at the halfway point on top of the number line. The
number line was labeled at each end point with 0 and 1 and was 85 mm long. Accuracy on the number
line was assessed according to previous work using the percentage absolute error (PAE) (Booth &
Siegler, 2006; Opfer & Siegler, 2007; Siegler et al., 2011), where PAE = (child’s response � correct
response)/(size of number line). The reliability was .84 overall (.82 at third grade, .84 at fourth grade,
and .86 at fifth grade).

Analysis plan

We used linear mixed models using STATA 13 (StataCorp, College Station, TX, USA). Because indi-
vidual children in the study were nested in classrooms and schools, we first computed intraclass cor-
relations (ICCs) on the dependent variable for Level 2 (classrooms; ICC = .029, p = .19) and Level 3
(schools; ICC = .084, p < .01). The ICCs suggest that it was not necessary to consider nesting by class-
room; however, nesting by school should be accounted for in our model. Because the number of
schools at Level 3 (n = 7) was not sufficient to support a nested model, we instead placed a variable
indicating school for each student as a control factor in the model. The final model was a crossed-
random-effects model in the form Yi = XiB + Zibi + ei, where Yi represents the values of children’s pro-
portional reasoning task for each ith child, Xi denotes the independent variables (between participants:
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format, fraction knowledge, and grade; within participants: foil type, direction, and magnitude; control:
gender) and B denotes their respective fixed-effects beta weight estimates, Zi denotes the random
effects (school and child) and bi denotes their estimates, and ei denotes the model fit error regarding
the discrepancy between the predicted value and the actual value for each observation. The data were
nested within each child controlling for school.

To compare the parallel models using either fraction knowledge or grade as a predictor, we com-
puted the Akaike information criterion (AIC) for each model (fraction knowledge AIC = 11677.69 and
grade AIC = 12021.09). The resulting Dgrade = 343.53, with Akaike weight, wgrade = 1.61e�224, evi-
dence ratio, ERgrade = 6.2e+223, and log evidence ratio, LERgrade = 223.79, indicates that the fraction
knowledge model is far superior to the grade level model (p < .001; pi ¼ exp 11677:69�12021:09

2

� �
< :001;

Burnham & Anderson, 2004). Furthermore, grade level was not a good proxy for fraction knowledge
in our data, with wide within-grade variation (see Table 1 for distribution). Taken together with the
previously discussed documented issues in using grade as a grouping variable, we do not report the
grade level model.

After conducting the linear mixed model, we used STATA’s margins command, which provides esti-
mates of both fixed effects (the independent variables) and the effects of marginal means comparable
to analysis of variance (ANOVA)-type contrasts. Significant p values of fixed effects and their respec-
tive interaction terms were followed up with contrasts of marginal means (Rabe-Hesketh & Skrondal,
2012; Williams, 2012). Apart from planned follow-up comparisons of format type, all other contrasts
were adjusted using a Sidak correction. We report Cohen’s d for effect sizes of pairwise comparisons by
converting delta method standard errors reported by STATA’s margins command into standard devi-
ations for the denominator and using the difference between predictive marginal means as the
numerator.
Results

The proportional reasoning task showed significant correlations with the fraction knowledge task
across all three conditions, rcontinuous(192) = .383, rdiscretized(182) = .624, rdiscrete(189) = .479, all with values
of p < .001. Means and standard deviation statistics for all the factors used in our crossed-effects linear
mixed model are presented in Table A1 of Appendix D. The overall results of our model are summa-
rized in Table A2 of Appendix D, which shows that gender was not a significant predictor.

Main effects of format type

All between-participant effect statistics are summarized in Table 2, and follow-up pairwise com-
parisons are shown in Table 3.

We expected that difficulty in solving proportional equivalence problems would be easiest for con-
tinuous formats, followed by discretized formats, with discrete formats being the hardest. There was
indeed a significant format effect. Follow-up pairwise comparisons reflected differences among all
three formats. As hypothesized, children in the continuous format had the highest scores, followed
by the discretized format and then the discrete format. However, format differences varied for levels
of fraction knowledge.
Table 1
Frequency distributions between grade and fraction knowledge.

Grade

Fraction knowledge Third Fourth Fifth Total

Low 95 61 43 199
Medium 58 70 57 185
High 29 63 89 181
Total 182 194 189 565

Note. v2(1, N = 565) = 53.224, p < .000.



Table 2
Between-participant effects by format type.

F p df

Format type 9.995 .000 2
Fraction knowledge 102.035 .000 2
Format Type * Fraction Knowledge 7.055 .007 4
Gender 1.420 .092 1

Note. .000 denotes p < .001.

Table 3
Overall contrasts by format type.

F p d Sidak p

Fraction knowledge model (all levels)
Continuous vs. discretized 2.668 .021 .12
Continuous vs. discrete 9.990 .000 .23
Discretized vs. discrete 2.184 .036 .11

Low fraction knowledge
Continuous vs. discretized 8.487 .000 .21 .000
Continuous vs. discrete 4.930 .002 .16 .010
Discretized vs. discrete 0.442 .346 .05 1.000

Medium fraction knowledge
Continuous vs. discretized 0.007 .904 .01 1.000
Continuous vs. discrete 5.216 .001 .17 .007
Discretized vs. discrete 4.351 .003 .15 .019

High fraction knowledge
Continuous vs. discretized 0.014 .864 .01 1.000
Continuous vs. discrete 0.980 .161 .07 .651
Discretized vs. discrete 1.296 .108 .08 .497

Note. .000 denotes p < .001.
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Fraction knowledge interaction with format

As expected, scores at each fraction knowledge (FK) level significantly varied by format, reflected
by a significant interaction between FK and format type (see Table 2 and Fig. 2). To follow up, we
examined planned contrasts of marginal means between format types within each FK level (Table 3).
Follow-up contrasts show that for children with low FK, performance was significantly higher with the
continuous formats than with both the discretized and discrete formats with small effects (Table 3).
There were no differences between the discretized and discrete formats for low-FK children. Children
with medium FK reflect a different pattern, with their scores not showing differences between the
continuous and discretized formats, but both formats were significantly different from the discrete
format with comparable effects (Table 3). Children in the high-FK group showed no differences among
the three different format types. All other effects and interactions are reported in Appendix E.

Comparison with chance (50%) by format type at each condition
One-sample t tests were conducted to examine whether children at each format type varied from

chance (50% accuracy) on each condition. We set the alpha level at .017 after a Bonferroni correction of
three conditions per FK group. We found that low-FK children were no different from chance when
manipulating discretized formats, t(61) = 1.703, p = .094, and discrete formats, t(60) = 0.208,
p = .836, but they were significantly higher than chance with continuous formats, t(65) = 4.422,
p < .001. The medium-FK group was also at chance with discrete formats, t(56) = 2.387, p = .0195.
Apart from the discrete formats for the medium-FK group, the medium-FK and high-FK groups were
above chance for all format types, with a range in scores for t(56) = 5.292 to t(64) = 19.686 and all
ps < .001.



Fig. 2. Accuracy scores on the proportional equivalence task by format and fraction ability, with 50% representing chance. Error
bars represent 95% confidence intervals. *p < .05; **p < .01; ***p < .005.
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Discussion

The current study provides novel evidence about the effects of format, as well as scale factor and
foil type, on children’s equivalence judgments of visually depicted proportions. Children’s perfor-
mance was highest with continuous formats, followed by discretized and then discrete formats. Fur-
thermore, children’s judgments suffered as the scale factor increased as well as when trials contained
a numerator-match foil (e.g., equal parts syrup between target and foil). Importantly, the effects of for-
mat, scale factor, and foil type interacted with children’s level of fraction knowledge. Children with
low FK performed at chance with discretized and discrete formats, whereas children with medium
FK performed at chance with purely discrete formats only. These findings suggest that the perceptual
nature of demarcations in discretized formats seems to disengage children’s intuitive proportional
reasoning skills when fraction knowledge is low, with the Gestalt of spatial separations in discrete for-
mats exacerbating this effect. It is likely that noncontinuous formats encourage children to represent
proportions using integers as they invoke counting, and it may have been the case that the Gestalt of
discrete formats left children with no choice but to count, suggesting that children struggle to repre-
sent proportions as relationships between two whole numbers. It is also likely that maintaining whole
numbers and thinking about their proportional relationship may have placed a greater cognitive
demand than needing to reason about the proportionality of two visual analogues. Recent eye-
tracking evidence with adults supports this notion; discrete displays elicited eye movements indica-
tive of counting, whereas continuous displays seemed to encourage comparisons and magnitude esti-
mation (Plummer, DeWolf, Bassok, Gordon, & Holyoak, 2017). This may also explain why adults were
more precise and preferred discrete formats when connecting them to discrete symbolic formats of
fractions (see DeWolf et al., 2015), perhaps due to formal instruction having automated counting pro-
cesses and/or having improved the precision of their numerical magnitude representations. This, in
turn, may have reduced the cognitive load necessary to count two sets of objects, hold in mind their
numerosity, and think about the relationships between the two counted objects as a proportion.

Continuous formats are likely easier for children to process because the proportion is represented
as an analogue. Support for the ease of processing analogue representations of proportions comes from
data with infants when proportions are too big to count (e.g., representing a 4:1 ratio in 80:20 units)
(Denison & Xu, 2010, 2014; Denison, Reed, & Xu, 2013; McCrink & Wynn, 2007; Xu & Garcia, 2008).
Even at a young age, children seem to develop a generalized magnitude system that allows them to
make sense of continuous intensive quantities (Hurst & Cordes, 2018; Newcombe, Levine, & Mix,
2015; Walsh, 2003). However, children often fail to use this system in situations where discrete
demarcations are applied to continuous quantities (Jeong et al., 2007; Newcombe et al., 2015), and
children are biased to use numerosities, which in turn leads them to erroneously represent propor-
tions as extensive magnitudes. The discretized representations may be ‘‘in between” the continuous
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and discrete representations given that a child can easier disregard the demarcations and focus on the
analogue representation of the proportion, which may have facilitated the encoding and maintenance
of an intensive magnitude representation when compared with the discrete formats. In the current
study, we found that children were less likely to be sidetracked by discretized or discrete quantities
as their fraction knowledge increased. One possible explanation could be that increased fraction
knowledge improves the precision of their generalized magnitude system. This idea is supported by
data from the number line estimation task; estimation errors were lower for children with higher
FK knowledge and vice versa.

Low- and medium-FK children’s performance was negatively affected by scale factor, suggesting
that mental transformations are used to enlarge/shrink proportions of varying sizes until they
match—a cognitively taxing process, especially as the distance between proportions increases
(Boyer & Levine, 2012; Möhring et al., 2018). This is consistent with evidence from studies on other
spatial thinking tasks such as performing spatial transformations in mental rotations (Shepard &
Metzler, 1971) and spatial navigation (Kosslyn, 2005), where greater angles in mental rotations and
longer navigation paths increase cognitive demands and decrease performance (Kosslyn, 2005;
Shepard & Metzler, 1971). A closer look shows that format further exacerbates the effect of scale factor
for both low- and medium-FK children.

We also investigated whether children are systematically lured by particular foil types. As reported
in the supplementary material, there was an overall effect of foil type such that children were less
likely to select the correct match on trials that involved numerator foils; this effect was significant
only for the low-FK children (see Table A2 and Appendix E). Importantly, and consistent with previous
work (Boyer & Levine, 2012), the foils do not seem to have systematically affected most of the children
in our study. Thus, the effects that we found cannot be explained by errors based on foil type
exclusively.

As can be seen in Table A2 of Appendix D and Fig. A2 of Appendix E, there was an interaction of
format, scale factor, foil type, and direction. As can be seen in Table A2 and Fig. A2, numerator foils
seem to be harder overall, whereas for denominator foils the difficulty seems to depend on format
and scaling. Our findings suggest that these differences are driven by format, with most of the differ-
ences resulting between children interacting with continuous displays versus discrete or discretized
displays. The latter two formats (discretized and discrete) appear to reflect a very similar pattern. It
is possible that children’s performance in the continuous format on trials with denominator foils is
more resistant to the effects of scaling and directionality (scaling upward vs downward) because both
continuous formats and denominator foils impose fewer cognitive demands. Other unexpected results
involved interactions between or among (a) fraction knowledge and scaling direction; (b) format, frac-
tion knowledge, and magnitude; and (c) format, fraction knowledge, and foil type. The above interac-
tions seem to be mostly driven by the differences between low-FK and med-FK children and mirror
the pattern of results described in the four-way interaction above. Overall, it appears that scaling
down at the higher magnitudes (.5 and .33) may be more challenging than scaling up for discretized
and discrete formats. Performance detriments on discretized formats when scaling down were also
reported by Boyer and Levine (2012), suggesting that the effects of scaling may be stable, but only
at higher scaling magnitudes, with formats that are not intuitive and for children with frail propor-
tional reasoning skills. Lastly, we note that our data should be interpreted with caution because our
effect sizes were between small and medium, which could limit their generalization to real-world
settings.

Implications

With respect to teaching practice, our findings shed light on several ways in which instruction
could be sequenced. As others have suggested, proportions may be understood sooner if presented
in continuous formats and lower scaling magnitudes (Boyer & Levine, 2012, 2015; Boyer et al.,
2008; Goswami, 1995; Jeong et al., 2007; Singer-Freeman & Goswami, 2001; Spinillo & Bryant,
1991, 1999). Whereas recent work suggests that discrete formats are more intuitive with bipartite
numerical notations (a/b) of proportions (DeWolf et al., 2015), we argue that children need significant
scaffolding before they can proficiently map between symbolic and discretized/discrete nonsymbolic
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proportions. This may be particularly true for lower-performing children who struggle with dis-
cretized and discrete units regardless of age. The current study adds evidence providing more speci-
ficity to now familiar instructional recommendations in that the sequencing progression should move
from continuous to discretized and, lastly, entirely discrete representations with gradual increases in
scaling. In elucidating these distinctions, future work should experimentally investigate the optimal
ways for integrating children’s intuitive analogue proportional abilities with their explicit mathemat-
ical operations and concepts.
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Appendix B
Trial
 Target
 Match
 Foil
 Foil type
 Scale factor
 Scaling magnitude
Scale factor > 1 (scaling up)

1
 1/4
 3/12
 3/4
 Denominator
 3:1 = 3.00
 3

2
 1/3
 3/9
 2/3
 Denominator
 3:1 = 3.00
 3

3
 2/3
 6/9
 2/8
 Numerator
 6:2 = 3.00
 3

4
 3/4
 9/12
 3/9
 Numerator
 9:3 = 3.00
 3

5
 1/4
 2/8
 3/4
 Denominator
 2:1 = 2.00
 2

6
 1/3
 2/6
 2/3
 Denominator
 2:1 = 2.00
 2

7
 2/3
 4/6
 2/8
 Numerator
 4:2 = 2.00
 2

8
 3/4
 6/8
 3/9
 Numerator
 6:3 = 2.00
 2

9
 2/8
 3/12
 2/3
 Numerator
 3:2 = 1.50
 1

10
 2/6
 3/9
 2/3
 Numerator
 3:2 = 1.50
 1

11
 4/6
 6/9
 2/6
 Denominator
 6:4 = 1.50
 1

12
 6/8
 9/12
 2/8
 Denominator
 9:6 = 1.50
 1
Scale factor < 1 (scaling down)

13
 3/12
 2/8
 3/4
 Numerator
 2:3 = 0.67
 1

14
 3/9
 2/6
 3/4
 Numerator
 2:3 = 0.67
 1

15
 6/9
 4/6
 3/9
 Denominator
 4:6 = 0.67
 1

16
 9/12
 6/8
 4/12
 Denominator
 6:9 = 0.67
 1

17
 2/8
 1/4
 2/3
 Numerator
 1:2 = 0.50
 2

18
 2/6
 1/3
 4/6
 Denominator
 1:2 = 0.50
 2

19
 4/6
 2/3
 4/12
 Numerator
 2:4 = 0.50
 2

20
 6/8
 3/4
 2/8
 Denominator
 3:6 = 0.50
 2

21
 3/12
 1/4
 3/4
 Numerator
 1:3 = 0.33
 3

22
 3/9
 1/3
 3/4
 Numerator
 1:3 = 0.33
 3

23
 6/9
 2/3
 3/9
 Denominator
 2:6 = 0.33
 3

24
 9/12
 3/4
 4/12
 Denominator
 3:9 = 0.33
 3
Note. We used the same items as Boyer and Levine (2012). However, the order was randomized such that items were presented

to every child in every format type in the following trial order: 1, 13, 6, 22, 10, 8, 24, 15, 19, 20, 3, 12, 16, 17, 9, 5, 21, 4, 2, 11, 7,
18, 23, 14.
Source. Table taken from Boyer and Levine (2012).
Appendix C

The figures below represent two fractions. Which number sentences represent the addition and
sum of these fractions? Circle yes or no.
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Appendix D

See Tables A1–A3.
Table A1
Summary of proportional equivalence task of overall accuracy, scaling magnitude, foil type, and scaling direction by condition,
grade level, and fraction knowledge.

Condition Fraction knowledge Grade level

Continuous Discretized Discrete Low Medium High Third Fourth Fifth

Overall accuracy 74 69 65 51 69 87 63 71 74
(.27) (.31) (.29) (.26) (.30) (.21) (.28) (.30) (.28)

Continuous – – – 63 72 90 68 76 78
– – – (.25) (.28) (.21) (.28) (.28) (.25)

Discretized – – – 44 71 91 64 70 73
– – – (.25) (.29) (.17) (.30) (.31) (.32)

Discrete – – – 50 59 84 56 65 72
– – – (.24) (.31) (.21) (.26) (.31) (.29)

Magnitude 1 (.33/1.5) 78 73 71 62 73 86 71 74 77
(.26) (.29) (.28) (.26) (.29) (.23) (.26) (.29) (.28)

Magnitude 2 (.50/2) 76 69 64 51 70 88 62 71 76
(.27) (.32) (.32) (.27) (.31) (.21) (.30) (.32) (.28)

Magnitude 3 (.67/3) 70 64 58 41 64 86 54 67 71
(.32) (.37) (.37) (.32) (.36) (.24) (.36) (.36) (.34)

Denominator foil 82 70 64 56 72 87 64 73 78
(.25) (.32) (.31) (.29) (.30) (.23) (.31) (.31) (.28)

Numerator foil 68 68 65 47 66 87 61 68 72
(.35) (.33) (.33) (.31) (.34) (.22) (.33) (.34) (.32)

Scaling up 75 70 66 53 70 87 64 71 76
(.28) (.32) (.32) (.28) (.31) (.23) (.31) (.31) (.29)

Scaling down 75 68 64 50 68 87 62 70 74
(.28) (.31) (.30) (.26) (.30) (.20) (.29) (.30) (.29)

Note. Values are percentages (%). Standard deviations are reported in parentheses.



Table A2
Summary results of crossed-random-effects linear mixed model.

F p df

Main effects
Within participants
Scale factor 90.340 .000 2
Foil type 31.330 .000 1
Scale direction 2.860 .017 1

Two-way interactions
Scale Factor * Fraction Knowledge 79.025 .000 4
Foil Type * Format Type 52.160 .000 2
Foil Type * Fraction Knowledge 14.575 .000 2
Scale Direction * Fraction Knowledge 5.340 .005 2
Scale Factor * Scale Direction 9.475 .000 2
Scale Factor * Foil Type 6.020 .002 2

Three- and four-way interactions
Scale Factor * Fraction Knowledge * Format Type 11.360 .004 8
Scale Factor * Foil Type * Format Type 6.855 .008 4
Foil Type * Fraction Knowledge * Format Type 10.065 .001 4
Foil Type * Scale Direction * Format Type 4.285 .014 2
Scale Factor * Foil Type * Scale Direction * Format Type 7.720 .004 4

Note. .000 denotes ps < .001. All other interactions were not significant (2.842 < Fs < .142, .058 < ps < .961). The dfs for error
terms ranged from 553.17 to 554.08.

Table A3
Summary of contrasts of marginal means between all format types at each scaling factor and scaling direction.

F Sidak p d

Scaling Factor 1 � Denominator Foil � Up
Continuous vs Discrete 15.961 .000 .29

Scaling Factor 1 � Denominator Foil � Down
Continuous vs. discretized 5.917 .014 .18
Continuous vs. discrete 9.202 .000 .22

Scaling Factor 2 � Denominator Foil � Up
Continuous vs. discretized 9.159 .000 .22
Continuous vs. discrete 7.144 .004 .19

Scaling Factor 2 � Denominator Foil � Down
Continuous vs. discretized 6.771 .006 .22
Continuous vs. discrete 18.973 .000 .19

Scaling Factor 2 � Numerator Foil � Up
Discrete vs. discretized 6.552 .007 .19

Scaling Factor 3 � Denominator Foil � Down
Continuous vs. discretized 7.960 .002 .21
Continuous vs. discrete 29.338 .000 .40
Discretized vs. discrete 6.372 .008 .19

Scaling Factor 3 � Denominator Foil � Up
Continuous vs. discrete 6.372 .008 .18

Note. Only contrasts with alpha below .05 after the Sidak adjustment are shown.
.000 denotes ps < .001. The dfs for error terms are as follows: continuous vs. discretized = 366, continuous vs. discrete = 372, and
discretized vs. discrete = 368.
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Appendix E

Results of interaction terms

Fraction knowledge interaction with scaling direction
Fraction knowledge also significantly interacted with (a) scaling direction, (b) scaling magnitude,

and (c) foil type (see Table A2 of Appendix D). Follow-up contrasts at each fraction knowledge with
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adjusted p values using the Sidak method suggest that children with low fraction knowledge (FK) per-
form significantly worse when scaling down than when scaling up, F(1, 196) = 16.565, Sidak p < .001,
d = .29, but there were no significant differences between scaling direction within the medium-FK
children, F(1, 182) = 0.022, Sidak p = .995, or high-FK children, F(1, 178) = 0.001, Sidak p = 1.000
(see Table A1 of Appendix D for means and standard deviations). The two-way interactions, Fraction
Knowledge � Scaling Factor and Fraction Knowledge � Foil Type, are subsumed within the three-way
interactions of Scaling Factor � Format � Fraction Knowledge and Foil Type � Fraction
Knowledge � Format (Fig. A1) (discussed in the next section).

Fraction knowledge interaction with scaling factor and format
Fraction knowledge interacted with scaling magnitude and format (see Table A2 of Appendix D and

Fig. A1). Contrasts of marginal effects between format types at each FK level with Sidak adjustments
suggest that low-FK children performed significantly better with continuous formats than with dis-
cretized formats, Fmag2(1, 128) = 11.713, Sidak p < .001, d = .418; Fmag3(1, 128) = 7.801, p = .001,
d = .341, or with discrete formats, Fmag2(1, 128) = 8.736, Sidak p = .001, d = .361, Fmag3(1,
128) = 6.160, Sidak p = .008, d = .303, at Magnitudes 2 and 3, respectively. Medium-FK children per-
formed better with continuous formats than with discrete formats at Magnitude 2, Fmag2(1,
120) = 4.621, Sidak p = .041, d = .271, and Magnitude 3, Fmag3(1, 125) = 5.216, Sidak p = .022,
d = .282. The remaining contrasts were not significantly different.
Fraction knowledge interaction with foil type and format type
Fraction knowledge also interacted with foil type and format type (see Table A2 of Appendix D and

Fig. A2). Follow-up contrasts of marginal means with Sidak adjustments suggest that low-FK children
had better accuracy with continuous formats than with discretized formats, FDen(1, 129) = 18.000, p <
.001, d = .518, and discrete formats, FDen(1, 129) = 12.301, p < .001, d = .429, for denominator foils.
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Fig. A1. Proportional equivalence scores at each scaling magnitude (Mag) by fraction knowledge and format type. Error bars
represent 95% confidence intervals.



Fig. A2. Proportional equivalence scores at each format type by fraction knowledge (FK) and foil type. Error bars represent 95%
confidence intervals.
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Medium-FK children performed better with continuous formats than with discrete formats for
denominator foils, FDen(1, 126) = 11.281, p < .001, d = .415. All other contrasts were not significantly
different.
Scale factor, scaling direction, foil type, and format interaction
There was a significant interaction among scale factor, scale direction, foil type, and format. As

shown in Fig. A3, the difficulty of denominator foils increases with higher scaling magnitude, espe-
cially when scaling down, with the greatest differences being between the continuous formats and
discrete formats at the highest magnitude scaled down. To unpack the contribution of each factor,
we contrast marginal means with format as a between-participant factor at each of the six scaling
magnitudes (three magnitudes up and three magnitudes down). We report pairwise comparisons
when the contrasts revealed a significant effect of format. (A summary of the contrasts with significant
effects of format and follow-up pairwise comparisons with Sidak adjustments is included in Table A3
of Appendix D.)

Children performed better with continuous formats than with discrete formats at all scaling mag-
nitudes on both scaling directions for denominator foils, with the exception of scaling up at Magni-
tudes 1 and 3. Children performed better with continuous formats than with discretized formats at
Magnitude 1 when scaling down, Magnitude 2 on both scaling directions, and Magnitude 3 when scal-
ing down. Children were also more accurate with discretized formats than with discrete formats at
Magnitude 3 for denominator foils scaled down. For numerator foils, children performed worse with
discrete formats only when scaling down at Magnitude 2. All other comparisons were not significant
after the Sidak adjustment or were above .05. Lastly, all other effects and interactions were not
significant.
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