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SUMMARY
Semantic memory—general knowledge of ideas and concepts—includes generalization processes that sup-
port inference. Episodic memory, on the other hand, preserves the specificity of individual events by binding
together unique combinations of elements from an episode and relies on pattern separation to distinguish
similar experiences. These two memory systems play complementary roles, supporting different mnemonic
goals, but the nature and extent of their interdependence is unclear.1,2 Some models suggest that new infor-
mation is encoded initially as hippocampus-dependent episodic memory and then, either through repetition
or gist extraction, becomes semantic over time.3,4 These models also posit a neocortical route to semantic
memory acquisition exists that can bypass the hippocampus.3 Both proposed routes are slow learning
mechanisms, yet generalization can occur rapidly. Recent models suggest that fast generalization relies,
in part, on the retrieval of individual but related episodes.5,6 Such episodic memory gating mechanisms
render fast generalization contingent on the memory specificity of instances, a pattern that has been
observed in adults.7,8 None of these models take into account the observation that generalization and
episodic specificity have asynchronous developmental profiles, with generalization emerging years before
episodic memory.9,10 We ask two questions about generalized and specific memory during early childhood:
first, is rapid generalization contingent on remembering specific past memories? And second, does the
strength or nature of this contingency differ across development? We found that the interdependence of
generalization and episodic memory varies across development: generalization success in adults, but not
in children, was contingent on context binding.
RESULTS AND DISCUSSION

To chart the development of generalization and episodic memory

specificity before and after age 6, when episodic memory ap-

pears robust,11,12 we devised a memory task for children ages

3 to 8 years (n = 70) and also administered it to young adults

(N = 29; STAR Methods). In this paradigm, we assessed general-

ization and memory specificity processes from the same set of

experiences. Participants viewed 20 cartoon characters making

collections of their favorite objects. Characters were embedded

in 80 events, each showing a character in a context and with an

object. Each character was seen with four objects from the

same category (e.g., musical instruments) in four semantically

congruent contexts (e.g., performance stages). We operational-

ized generalization as the ability to make novel inferences about

characters based on commonalities among the places and ob-

jects seen with them (i.e., the category). We treated episodic

specificity as multifaceted: memory for the context in which an

event occurred (i.e., context binding) andmemory for the specific

details of the conceptual and perceptual features of an item (item

conceptual specificity and item perceptual specificity) in three-

alternative forced-choice tasks (Figure 1).
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Data from five participants (two 4-year-olds, two 5-year-olds,

and one 7-year-old) whose average accuracy across all four

memory tasks did not exceed chance level (33%) were excluded

from analyses. Overall chance-level performance likely reflects

poor general understanding of the procedure or inattentiveness

during encoding. Performance did not differ by sex (all p values

> 0.12) or relate to verbal skills in any age groups (all p values >

0.22). Correlations between tasks are illustrated in Figure S1.

Age-related differences
We tested whether performance on each task increases as a

function of age across 3–8 years. A linear regression of age (in

months) on accuracy showed that, with increasing age, children

were better at generalization (R2(63) = 0.20; p = 2.19 3 10�4),

item conceptual specificity (R2(63) = 0.22; p = 8.70 3 10�5),

and item perceptual specificity (R2(63) = 0.12; p = 0.005). Inter-

estingly, age was not associated with context binding accuracy

(R2(63) = 0.03; p = 0.20; Figure 2A). Among young adults, age

was not related to memory performance (all p values > 0.46).

Second, we compared children’s memory performance to that

of young adults. We used three categories: younger children

(aged 3–5); older children (aged 6–8); and adults. A mixed 3
Inc.
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Figure 1. A schematic depiction of the main memory task procedure

The overall procedure included two blocks (A); each block included a character introduction phase (B), the encoding phase (C) with a pre-determined character-

category assignment (D), and the test phase (E).
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(age groups) 3 4 (tasks) ANOVA yielded a main effect of age

(F(2, 91) = 17.79; p < 0.001; h2 = 0.13), a main effect of task

(F(3, 272) = 54.71; p < 0.001; h2 = 0.18), and a significant age

by task interaction (F(6, 273) = 6.25; p < 0.001; h2 = 0.04). Post
hoc tests showed that younger children were less likely to

make accurate generalizations than older children (t = �5.09;

pholm < 0.001) and adults (t =�7.28; pholm < 0.001); older children

and adults did not differ on generalization (t = �2.64; pholm =
Current Biology 31, 2690–2697, June 21, 2021 2691



Figure 2. Age patterns in memory performances separated by tasks

(A) Scatterplots ofmemory accuracy on the generalization, context binding, item conceptual specificity, and item perceptual specificity tasks shown on the y axes

and age (measured in months) shown on the x axes.

(B) Distributions of participants’ accuracy on each task separated by age group, including younger children (ages 3–5), older children (ages 6–8), and young adults

(ages 18–24). Black dots indicate the means, black lines indicate the error bars, and colored dots represent individual participants.

See also Figure S1.
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0.24). Similarly, for item conceptual specificity, both older chil-

dren (t = �5.15; pholm < 0.001) and adults (t = �3.85; pholm =

0.006) outperformed younger children, but their performances

did not differ (t = 1.09; pholm = 1.00). For item perceptual speci-

ficity, again older children and young adults did not differ (pholm =

1.00), and adults outperformed younger children (t = �3.33; p =

0.03), but the difference between older and younger children was

nonsignificant (p = 0.06). Surprisingly, there were no age differ-

ences in context binding among the three age groups (p >

0.86). Despite performing worse than their older counterparts

in three out of four tasks, the younger children’s accuracy ex-

ceeded chance level (0.33) on all four tasks (all p values <

0.002; Figure 2B).

Age-related improvements in generalization from early to mid-

dle childhood corroborate previous findings using different

paradigms, including associative inference13–15 and temporal

regularity.16 Although older children and adults did not differ in

our study, previous studies reported an increase in associative

inference or detection of recurring patterns from age 6 to 14.15

Generalization may continue to change duringmiddle childhood.

We also found that younger children were less able to remember

objects’ identities and the perceptual details than older children

and adults. The literature has shown few age-related differences

in item conceptual memory,10,17,18 but perhaps this age pattern

only applies when conceptual interference among items is low.

Age changes in item perceptual specificity are consistent with

previous work.19,20 Past research on pattern separation has pri-

marily used variations in single-object exemplars as stimuli, such

as different rubber ducks,21 creating interference along both
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conceptual and perceptual dimensions. We found that accuracy

for objects’ perceptual details was significantly associated with

conceptual specificity (Figure S4A). Nonetheless, the age pat-

terns in perceptual memory specificity among children persisted

when we only examined trials in which the object identities were

remembered (Figure S4B). These findings suggest that parsing

the sources of item-level memory specificity is important for

charting memory development.

Associations between age and context binding were not de-

tected. Previous studies have consistently reported age-related

improvements in context binding—or relational binding in gen-

eral—throughout early andmiddle childhood.12,17,22,23We spec-

ulate that the nonsignificant age effects in our paradigm could be

due to the unusually high number of item-context associations,

together with strong semantic congruency for the item-context

pairs associated with each character. In addition, participants

learned about characters in an interleaved fashion, which is

thought to be beneficial for generalization by increasing be-

tween-category discriminability.24,25 Perhaps the interleaving

dampened adults’ memories for specific item-context pairs as

a cost of promoting generalization. Further, children were

exposed to all four types of questions prior to encoding in the

‘‘screening’’ procedure, whereas adults were not, which may

have dampened age-related differences in context binding.

What determines generalization?
Our primary question was whether generalization depends on

episodic specificity and whether this relationship depends on

age. We asked (1) what aspects of episodic memory specificity
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would predict generalization success, (2) whether within-cate-

gory semantic similarity would promote generalization, and (3)

whether these factors interacted with age. We began by defining

within-category semantic similarity. Semantic relatedness varied

across different characters (Figure 3B). We quantified this varia-

tion using global vectors for word representation (GloVe)26 to es-

timate the semantic similarity among the items in our stimulus set

(Figure 3A; STAR Methods: Quantification and statistical anal-

ysis). GloVe is a vector space model that can be ‘‘trained’’ on a

corpus of words by building a co-occurrence matrix and predict-

ing the total co-occurrences between a target word and a

context word. The co-occurrence of two words from large

bodies of text is an index of their semantic relatedness.

We then conducted a generalized linear mixed effects model

with age (as a continuous variable), context binding, item con-

ceptual specificity, item perceptual specificity, semantic similar-

ity, age*context binding, age*item conceptual specificity, age*i-

tem perceptual specificity, and age*semantic similarity as fixed

effects and participant and category as randomeffects to predict

generalization success on a trial-by-trial basis. Given that each

participant contributed to multiple memory tasks, we modeled

the non-independent binary outcome of generalization response

(successful or unsuccessful) conditional on the attributes of each

participant and each category by adding them to the models as

random effects. To ensure that ceiling effects did not impact the

contingency patterns, we excluded participants whose general-

ization performance or item conceptual specificity performance

reached ceiling level (100%; 9 adults and 8 older children).

Generalization success was significantly related to age (b =

0.33; z = 2.15; p = 0.032), semantic similarity (b = 0.16; z =

2.00; p = 0.046), item conceptual specificity (b = 0.27; z = 2.14;

p = 0.032), and an age*context binding interaction (b = 0.39;

z = 2.94; p = 0.003). No other predictors or interactions reached

significance (all p values > 0.35; Figure 4). Increasing age and

higher within-category semantic similarity were associated

with higher probability of generalization. Intact memory speci-

ficity for the object identities seen with a character increased

the probability of generalization for that character. Importantly,

in adults, remembering the specific contexts of the objects

was associated with generalization for a given character. In chil-

dren, this link was not observed: generalization success was un-

tethered to their context memory.

Our design targeted different aspects of episodic memory.

Across all ages, greater degree of within-category semantic

relatedness increased the probability of generalization success.

The conceptual common ground that links together related epi-

sodes is important for generalization, suggesting a role for pre-

existing semantic knowledge in promoting generalization. These

findings align with the idea that category coherence is important

for category learning and generalization.27 Further, accurate item

conceptual specificity was associated with greater generaliza-

tion. Generalization benefitted from accurate memory specificity

for the object identities from the individual episodes.

Crucially, contingency between episodic memory specificity

and generalization varies across development. Adults’ general-

ization relied on remembering specific item-context representa-

tions, consistent with the notion that rapid generalization relies

on retrieving specific instances7,8 and that there was no general-

ization-specificity trade-off.28,29 These results suggest that
adults’ ability to rapidly generalize do not rely on abstraction—

a process by which memories for the specific instances are

lost, but the emergent average representation supports general-

ization across episodes.30 Instead, it relies on their ability to

remember specifics and then integrate overlapping elements

across episodes.

However, contingency between generalization and context

binding was not observed in either early or middle childhood.

Memory for specific what-where relational structures is one

key signature of episodic memory capacity.31,32 Based on these

findings, we suggest that there may bemultiple routes to acquire

what the literature refers to as gist or schemas or what we call

generalized memories. Importantly, different routes are available

at different points in development. In a mature system, fast

generalization can occur on the fly based on a chain-like retrieval

process of the individual but related episodes. Preservation of

rich contextual memories played a role in generalization for

young adults, consistent with previous studies.6,7 However,

this link was not observed in children. Without a full constellation

of robust episodic memory capacities, younger childrenmay rely

on the aspects of a specific episode that they do encode and

retain, along with the support of overall semantic structures

that tie together related episodes. These patterns align with pre-

vious findings that memory for individual items develops much

earlier than item-context or item-item relational memory.12,18

Even in our youngest children, memory specificity at the item

level was tied to generalization success, namely conceptual

specificity, suggesting a certain kind of contingency between se-

mantic memory acquisition and episodic memory.

The development of generalization and episodic memory pro-

cesses is linked to the maturational courses of several brain re-

gions and networks. Several models have posited that the den-

tate gyrus and CA3 subfields of the hippocampus are involved in

individuated memories.33,34 Aligned with these ideas, develop-

ment of late-maturing subfields, including the dentate gyrus

and CA3, is associated with binding ability35 and pattern separa-

tion processes.19,36 Age differences in the structure37 and func-

tional recruitment38 of the prefrontal cortex have also been linked

to episodic memory improvements in late childhood and adoles-

cence. In adults, recent research has shown that the hippocam-

pus also contributes to the integration of related events to form

new generalizable memories using a variety of paradigms.27

The hippocampus may interact with the medial prefrontal cortex

(mPFC) to integrate episodes with shared elements.39 Indeed,

associative inference in children is associated with gray matter

volume in hippocampal head and mPFC.40 It is likely that

the development of the hippocampus and its connections to

the mPFC subserve the behavioral gains in generalization and

episodic memory specificity that occur in infancy and childhood.

An important question for the future is whether generalization

relies on different neural substrates at different stages of neural

development. It has been suggested that infants rely on the

early-developing monosynaptic pathway linking the entorhinal

cortex to CA1 to perform fast generalization.34,41 Uneven matura-

tional rates for intrahippocampal pathways and mPFC suggest

that generalization might rely on different mechanisms in infancy,

in childhood, and in adulthood. Specifically, some forms of

rapid statistical learning and generalization could rely on the

monosynaptic pathway early on in life,34whereas inference-based
Current Biology 31, 2690–2697, June 21, 2021 2693



Figure 3. Semantic similarity between every pair of items within the stimulus set

(A) A matrix of all pairwise similarity scores for the 90-item stimulus set in blocks A (left) and B (right) calculated from global vectors for word representation

(GloVe). Every cell represents an inter-item semantic similarity score, with darker colors representing higher scores.

(B) A distribution of participant-specific semantic similarity scores, defined as themean of the four encoding items and the generalization target for each category.

Higher similarity scores indicate that the items within a given category were closer to one another in semantic space (more similar). Each black horizontal bar

indicates the group median, the whiskers extend to 1.5 times the interquarter range, and every dot represents a participant.

See also Figure S3.
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Figure 4. Age patterns in the contingency of generalization on memory specificity and semantic similarity

Distributions of the estimated probability of generalization success (y axes) by each significant fixed effect and interaction with age from the generalized linear

mixed effects model. For semantic similarity (A), within-category semantic similarity scores are plotted on the x axis. Greater within-category similarity score is

associated with higher probability of generalization success for the respective character. For context binding (B) and item conceptual specificity (C), accurate and

inaccurate trials are plotted on the x axes. The association between context binding success and generalization success depends on age, such that accurate

memory for context binding was associated with greater probability of generalization success in adulthood, but this pattern was not observed in childhood. A

callout box depicts the same data, except age was grouped for visualization purposes. For item conceptual specificity, accuracy was associated with greater

probability of generalization success for the corresponding character. Each line represents an individual participant; each dot denotes an individual trial. Color

intensity represents age. Significance notation: *p < 0.05; **p < 0.01. See also Figure S4.
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generalization later in life may recruit wider hippocampal circuitry

in coordination with the prefrontal cortex.42

Based on this research, we suggest two next steps. First, a

cross-sectional design limits us from understanding develop-

mental change in generalization and specificity. Charting the po-

tential lead-lag between the two memory functions would eluci-

date the dependency between semantic memory acquisition

and episodic memory specificity. Perhaps behavioral gains in

context binding allow one to rely on the rich contextual details

of individual episodes for rapid generalization. Second, age-

related differences in categorical knowledge need to be sepa-

rately assessed and related to memory. In addition, two limita-

tions of the current work should be corrected in future work.

The design can be improved by randomizing the order of the

context binding and the item conceptual and perceptual speci-

ficity tasks to circumvent unintended order effects in perfor-

mance. Another limitation in the current work is that the children

were exposed to examples of all four memory tasks in the

screening procedure, whereas the adults were not administered

the screening procedure. This procedural difference may have

introduced uneven strategy deployment to the encoding phase

between the age groups.

In conclusion, our study suggests that there may be multiple

routes to inference-based generalization. Specifically, memory

specificity for the rich context in an idiosyncratic episode may

support fast generalization in adults, but not in children. The

developmental asynchrony of semantic and episodic memory

challenges the notion that semantic knowledge acquisition

and rapid generalization are necessarily gated by episodic

memory. This developmental phenomenon has important
implications for contemporary models of memory that charac-

terize the ontology of processes supporting complementary

memory functions.
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(Zoe) Ngo (ngo@mpib-berlin.mpg.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All experimental materials, second-level data, and scripts for the analyses have been made publicly available through the Open Sci-

ence Framework (https://osf.io/gv485/). The code for the memory experiment is available via Github (https://github.com/hspopal/

generalization).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects
Child Sample in the Sorting Task

Six children (five 4-year-olds and one 5-year-old) who did not participate in the main experiment participated in our sorting task (see

Step-by-Step Method details).

Child Sample in the Main Experiment

A total of 32 younger children (15 females; 17 males; Mmonth = 57.63 ± 7.33, range = 36-70) and 38 older children (25 females;

13 males;Mmonth = 86.24 ± 8.46, range = 72-101) recruited from Philadelphia and the surrounding suburbs participated in the study.

All recruited children were free of color blindness and psychological, neurological, and developmental disorders as reported by a

parent. Informed consent was obtained from the child’s parent. Six additional children participated but were not included in the an-

alyses due to incomplete procedure (n = 3) or failure to understand the task procedure based on a screening procedure (n = 3;

2 3-year-olds and 1 4-year-old; see section Screening Procedure). Among the 70 children who participated in the study, 12 were

administered the memory task and verbal skills task virtually via Zoom due to the COVID-19 pandemic (for memory performance

separated by testing format, see Figure S2).

Young Adult Sample in the Main Experiment

The young adult sample consisted of 29 undergraduate students (18 females; 11 males; Mage(years) = 20.07 ± 1.65; range = 18–24)

from Temple University. Young adults gave informed consent and reported having normal or corrected-to-normal vision. All children

were given a small toy for their participation, except for those tested virtually. All young adults were given partial course credit. This

experiment was approved by the Temple University Institutional Review Board committee.
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Materials and Equipment
All participants were administered the memory task from MacBook laptops running macOS v10.11 or later. The PsychoPy memory

task was installed on these laptops in advance and displayed to children either in-person or via screen-sharing over Zoom. To

conduct the experiment, the PsychoPy program, stimuli files, and the task scripts were locally downloaded onto the laptops in

advance.

METHOD DETAILS

Sorting Task
After our initial stimulus selection, we gauged children’s familiarity with the categories using a sorting task. Six children (5 4-year-olds

and 1 5-year-olds) who did not participate in the main experiment participated in this task.

Materials
Line-drawn images of the objects were printed out on A4 papers and cut into small cards. For each block, 90 items were randomly

separated into 10 decks of 9 items (1 item from each category per deck).

Procedure
One deck of items was randomly selected to serve as the reference deck and the cards were arranged horizontally on a table. Chil-

dren were given the other 8 decks one at a time and asked to place each card under an item in the probe set where it best belonged.

We repeated the same procedure with the second block. These children performed the sorting task with 100% congruency with our

initial assignments.

Screening Procedure
To acquaint childrenwith the task and to ensure that wewould only include childrenwho understood the cover story of the ‘‘collection

game,’’ we administered a short mockup of the experiment with different stimuli from the main experiment.

Materials
Stimuli were selected in the same manner as those used in the Memory Task (see Main Experiment, Materials), except that the

screening procedure was created and administered using PowerPoint v16.16.19.

Procedure
Children were introduced to a character named Gachapin. They were told that ‘‘Gachapin was making a collection of different kinds

of vegetables and goes to different places to look for vegetables to add to his collection.’’ We then presented 4 encoding trials, each

showing Gachapin in a context (e.g., a garden) and paired with a vegetable (e.g., carrot). Different from the encoding phase in the

main experiment, we showed 4 encoding trials simultaneously on the same screen. The mockup test phase for Gachapin proceeded

in the samemanner as the test phase in themain experiment, with the exception that corrective feedbackwas given for each task. It is

important to note that on the generalization test trial of Gachapin, participants were asked to choose one object that Gachapin would

add to his collection and were again reminded of the category: ‘‘Remember, Gachapin likes vegetables and is collecting different

kinds of vegetables.’’ Subsequently, another encoding-test block proceeded using a different character, category, and set of stimuli.

Participants who did not select the target in at least one of the two generalization trials did not proceed to the main experiment (n = 3:

two 3-year-olds and one 4-year-old child). The rationale for this exclusion criterion was that failing on a generalization test after

explicit instructions about the character’s category and seeing all the encoding trials simultaneously indicated a failure in compre-

hending the task.

Main Experiment
Materials

PsychoPy version 3.0.0 was used to program and present the Memory Task in full screen on laptop computers. Randomization be-

tween subjects was done in regards to the order of trials and the selection of objects (without replacement) for each of the task sec-

tions. Cartoon images of 20 unpopular and androgynous characters, 80 scenes, and 180 black-and-white, line-drawn objects were

selected from the Google Image search engine. Unpopular and androgynous characters were used to reduce the probability of chil-

dren having pre-existing semantic knowledge—including gender stereotypes—about the characters. Twenty categories of seman-

tically congruent objects and scenes were chosen based on their probable familiarity to young children (e.g., musical, cooking, and

medical instruments). Each character was arbitrarily assigned to a category (e.g., Luntik was assigned to musical instruments). Each

character was placed in four different scenes to create four encoding trial images for that character. All four scene images paired with

a given character were semantically congruent with the character’s assigned category (e.g., Luntik was placed in four perceptually-

distinct performance halls; Figure 1D). The 180 objects were chosen such that there were nine distinct objects for every category

(e.g., the musical instrument category consisted of a guitar, a piano, a drum, a trumpet, etc.). Every line-drawn object was manually

painted with three distinct colors using Photoshop, which resulted in a total set of 720 object images from the original set of 180 ob-

jects. An additional three characters, nine backgrounds, and 17 objects were selected from Google Images to use in the training
Current Biology 31, 2690–2697.e1–e5, June 21, 2021 e2
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phase and as an example trial. These additional stimuli were semantically unrelated to those used for the study and test phases of the

experiment.

In-person Procedure

All participants were tested individually. The experiment was divided into two encoding-test blocks with nonoverlapping stimuli be-

tween the two blocks. Each block consisted of a character familiarization, an encoding phase, and a test phase (Figure 1A). The test

phase consisted of four memory tasks described below.

Character introduction

All participants were first told that they would be introduced to some new friends. We presented images of each character sequen-

tially and in a randomized order. On each trial, the name of the character was presented on the top of the screen (e.g., ‘‘This is Lun-

tik’’), and the experimenter read aloud their names (e.g., ‘‘This is Luntik,’’ ‘‘This is Doraemon,’’ etc.). There were 10 characters per

block (Figure 1B).

Encoding

Participants were told that each friend was making a collection of their favorite things, and that each friend would go to different pla-

ces to find things to add to their collection. Participants were informed that they should pay attention to see what each of their friends

like. The encoding phase consisted of 40 trials, where each consisted of an image of a character in a context presented on the left side

of the screen and an object presented on the right side of the screen (5 s, 0.5 s ITI). Every character appeared in four encoding trials,

each time in a different context and paired with a different object. Critically, the context and objects paired with a given character

were semantically related. For instance, Luntik—a character assigned to themusical instrument category—was seen in different per-

formance halls and collected objects such as a drum, a guitar, a horn, and an accordion. The order of the encoding trials was ran-

domized across participants, with the only restriction being that the same character would not appear in more than two consecutive

trials (Figure 1C).

Test

The test phase immediately followed the encoding phase and consisted of four self-paced three-alterative-forced-choice tasks. The

tasks included: (a) generalization; (b) context binding; (c) item conceptual specificity; and (d) item perceptual specificity. These were

administered in a fixed order across participants (Figure 1E). Each task consisted of 10 trials (one trial per character) presented in a

randomized order across participants.

Generalization

Every test trial showed a character at the top of the screen and three objects at the bottom of the screen. Participants were asked to

choose one object that this friend would add to their collection. All three objects were novel items that did not appear in the encoding

phase. One object was the target—the correct item that belonged to the category assigned to that character. The other two objects

were lures—objects that belonged to different semantic categories assigned to two other characters. Target selection would indicate

that participants successfully made a novel inference based on the related episodes associated with a given character.

Context Binding

Every test trial showed an image of a character in one of that character’s four encoding contexts at the top of the screen and three

objects at the bottom. Participants were asked to choose the object that that friend had found in that particular place. All three objects

were seenwith the character at encoding. One object was the target—the correct item that was seen with the character in that partic-

ular context. The other two objects were lures—objects that were seen with the character, but that were paired with that character in

different contexts. Target selection would indicate that participants remembered the specific object-context co-occurrence.

The item conceptual specificity and item perceptual specificity tasks were linked, such that the item perceptual specificity trial

immediately followed the item conceptual specificity trial for each character. Every item conceptual specificity test trial showed a

character at the top of the screen and three line-drawn objects at the bottom of the screen and were asked, ‘‘Which one of these

three things did this friend find for their collection earlier’’? All three objects belonged to the same category assigned to the character

(e.g., musical instruments for the Luntik trial). One object was the target—the correct item that had appeared at encoding. The other

two objects were lures—objects that belonged to the semantic category assigned to the character, but that never appeared at

encoding. In the presence of conceptually similar lures, target selection would indicate that participants remembered the objects’

identities with high specificity. Critically, all three objects were presented as the color-stripped line drawn versions because we sub-

sequently tested participants’ memories for the perceptual details of the objects.

If the participants correctly selected a target, the phrase, ‘‘That’s right!’’ would appear on the screen for 2 s and was read aloud by

the experimenter. On trials in which the participant correctly selected the conceptual target, the item perceptual specificity test trial

for the same character immediately followed. If the participant incorrectly selected one of the lures, corrective feedbackwas provided

by a green circle surrounding the target, and the experimenter said, ‘‘You actually saw this object earlier.’’ Then the item perceptual

specificity test trial for that character followed. The rationale for providing feedback on the conceptual trials was to ensure that we

would have an equal number of valid test trials on the item perceptual specificity task. Once participants advanced to the item

perceptual specificity trial, they were shown the same character from the preceding item conceptual specificity trial, with three object

images presented at the bottom of the screen. One object was a target—the identical object to the one that appeared at encoding.

The other two objects were lures—similar exemplars of the target that differed in color. In the presence of perceptually similar exem-

plars, target selection would indicate that participants remembered the objects’ perceptual attributes with specificity.

All nine objects in each category were randomly assigned as encoding items (4 objects), generalization target (1 object), general-

ization lures for other categories (2 objects), or item conceptual specificity lures (2 objects) across participants. All objects were fully
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counterbalanced such that they never appeared twice in the test phase. The procedure was repeated twice but with entirely different

sets of categories, characters, contexts, and objects. This resulted in a total of 20 characters and categories, 80 encoding trials, and

20 test trials per task (80 test trials) in total. The order of the two encoding-test blocks was counterbalanced across participants.

Virtual-testing Procedure

Among the 70 children who participated in the study, 12 were administered the memory task and verbal skills task virtually via Zoom

due to the COVID-19 pandemic. For the virtual testing format, we instructed participants’ parents to set up either a desktop or laptop

at children’s eye level and test their internet connection. The experimenter shared their own screen with the participant such that the

participant would view the screen in the same manner as participants who were tested in person. At test, when participants made

memory judgments by pointing to one of the options in the 3AFC test, participants’ parents were instructed to say, ‘‘left,’’ ‘‘middle,’’ or

‘‘right’’ to indicate to the experimenter which option the child had selected. Parents were specifically instructed to not name objects

that appeared in the experiment, and to refer only to their relative position on screen.

Verbal Intelligence Assessment
Materials

Children were administered the verbal portion of the Kaufman Brief Intelligence Test, second edition (KBIT-243), whereas young

adults were given the American National Adult Reading Test (AMNART49), as measures of general verbal skills. One child was not

administered the KBIT due to fatigue.

Procedure

KBIT-2. Fifty-eight children were tested in person and twelve children were virtually tested.

In-person testing format

Children were instructed to point to one of six images simultaneously shown on a page that was the best match for a word or phrase

(e.g., ‘‘which of these lives in a forest’’? — a picture of a deer), and to respond with a one-word answer to verbal riddles (e.g., ‘‘what

can only be seen at night and twinkles in the sky’’?— ‘‘star,’’ ‘‘moon’’). The test, with increasing levels of difficulty in each section, was

terminated when a child provided incorrect responses in four consecutive trials.

Virtual testing format

The experimenter shared their own screen on Zoomwith the participant, on which was displayed a scanned-in version of the KBIT-2,

displayed on screen rather than on paper as it would be in person. Otherwise, the experimenter administered the test verbally in the

samemanner as when in person. When participants responded to the questions by pointing to one of the options on the screen, par-

ticipants’ parents were instructed to respond with the letter corresponding to the image the participant pointed to (A-F) to indicate to

the experimenter which option the participant had selected. Parents were specifically instructed to not name objects that appeared

on screen, and to refer only to their corresponding letter label.

AMNART

All young adults were tested in person. The 45-item AMNART is an American version of the National Adult Reading Test. This test

measures the ability to read aloud irregular English words. Pronunciation errors were tallied by the experimenter and an

AMNART-estimated IQ score was calculated using Grober and Sliwinski’s formula, which accounts for years of education.49

QUANTIFICATION AND STATISTICAL ANALYSIS

We used JASP v0.14.1 and RStudio v1.4.1103 to conduct all of our statistical analyses. The significance level of 0.05 was applied to

all analyses, with the exception of Posthoc tests which employed a Holm correction to the significance level. We quantified accuracy

as the proportion of trials in which the targets were selected in our three-alternative forced choice (AFC) test. First, we identified par-

ticipants whose average accuracy across the four memory tasks did not exceed chance level (33%). These participants were not

included in the subsequent analyses.

To test whether memory performance differed by sex, we conducted an independent-samples t tests to compare accuracy on

each task between male and female participants. Further, we tested whether verbal skills were related to memory by conducting

bivariate Pearson correlations between verbal score (KBIT-2 and AMNART for children and adults, respectively) and accuracy on

each task accuracy. A separate correlation was conducted for each of the three age groups: younger children (aged 3-5), older chil-

dren (aged 6-8) and adults (aged 18-24).

Age-related Differences in Memory Performance
To test for age-related differences in memory performances, we tested whether performance on each of the memory tasks (gener-

alization, context binding, item conceptual specificity, and item perceptual specificity) was related with age in children by conducting

Pearson correlations between age (measured in months) and accuracy. The same analysis was performed in adults, except that age

was measured in years. Further, to test whether memory performance differed by age and whether the age effects interacted with

memory tasks from early childhood into young adulthood, we conducted a mixed 3 (age groups: younger children, older children,

adults) x 4 (tasks) ANOVA. Children aged 3-5 were categorized as younger children. Children aged 6-8 were categorized as older

children. The adult group consisted of participants ages 18-24. All four tasks were included: generalization, context binding, item

conceptual specificity, and item perceptual specificity.
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Finally, we conducted bivariate Pearson correlations to test whether performances on each of the four tasks was related to per-

formances on the others, in each age group (younger children, older children, adults) separately.

Semantic Similarity Analyses
Global Vectors forWord Representation (GloVe)26 was employed usingMATLAB v9.8 to estimate the semantic similarity between the

items in our stimulus set. GloVe is a vector spacemodel that can be ‘‘trained’’ on a particular corpus of words by building a co-occur-

rencematrix and predicting the total co-occurrences between a target word and a context word. The premise of this approach is that

the co-occurrence statistics between two words from large bodies of texts should reflect their semantic relationship. We used a

pre-trained word vector on 42 billion tokens of web data (Common Crawl) which contains 1.9 million vocabularies to estimate the

semantic similarity between every pair of items within a category in our stimulus set.

To yield the semantic similarity score, we calculated a cosine similarity score ranging from �1 to 1 between every pair of words,

with greater values denoting higher similarity between two words (Figure 3A). To approximate the degree of semantic clustering of

each category in our whole stimuli set, we calculated two semantic similarity scores fromGloVe: (i) within-category score: an average

pairwise similarity score across 36 pairs for a given category (9 items per category); and (ii) across-categories score: an average pair-

wise similarity across 729 pairs for an item from a given category and all items from the other 9 categories learned in the same block

(Figure S3). The overall pattern shows that within-category scores are higher than across-category scores for all 20 categories,

although to varying degrees for different categories.

Given that for each category, we randomly assigned four items that appeared at encoding, and one generalization target at test, we

computed a participant-specific semantic similarity score among these five items per category by averaging across 10 semantic

similarity scores (10 pairwise among five items) for each participant (Figure 3B).

Contingency Analyses on Memory Performances
To test what aspects of episodic memory specificity would predict generalization success and whether within-category semantic

similarity would promote generalization, for our three age groups separately (younger children, older children, and young adults).

We used the lmer package in RStudio v1.4.1103 to conduct a generalized linear mixed effects model with age, semantic similarity,

context binding accuracy, item conceptual specificity accuracy, and item perceptual specificity accuracy, age*semantic similarity,

age*context binding accuracy, age*item conceptual specificity accuracy, and age*item perceptual specificity accuracy as fixed ef-

fects, with participant and category were included as random effects, to predict generalization success on a trial-by-trial basis. Age

and semantic similarity were continuous variables. Context binding, item conceptual specificity, and item perceptual specificity ac-

curacy were binary variables (0 for incorrect and 1 for correct responses). Given that each participant contributed tomultiple memory

tasks, we modeled the non-independent binary outcome of generalization (successful or unsuccessful) response conditional on the

attributes of each participant and each category by adding them to the models as random effects.

To test whether remembering an object’s perceptual details was strongly tied to participants’ conceptual memory for that object,

we conducted a generalized linear mixed effects model predicting item perceptual specificity with item conceptual specificity, age,

and item conceptual specificity*age as fixed effects and with participants and categories as random effects (Figure S4A).
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